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1. OVERVIEW

This document is the final report for Multichannel Signal Processing Extensions, an
effort conducted by Kaman Sciences Corporation (KSC) under Rome Laboratory’s Broad
Agency Announcement (BAA) number 93-07. This effort was performed for

Dr. James H. Michels
Rome Laboratory
RL/OCTM
Griffiss AFB, NY 13441
(315) 330-4432

1.1 Objective

The objective of this effort was to extend the signal processing capabilities of the
Multichannel Signal Processing Simulation System (MSPSS), including:

e The analysis of a signal detection algorlthm for a signal with constant but unknown
amplitude in (white or colored) noise

e The addition of a capability to generate Weibull-distributed noise or clutter

e The implementation of the Representative Model which provides user-control over
statistical properties of simulated space-time data, as calculated from certain parameters
characterizing the phased-array radar platform, the clutter environment, signals, and
jammers

e Additional diagnostic capabilities.

1.2 Background

Dr. James Michels’ ongoing research program investigates an original approach in
multichannel signal processing (Michels 89, 90a, 90b, 91, 92a, 92b), including the sponorship
of related work (e.g. Rangaswamy 92 and Roman 93). This research program has developed:

e A synthesis procedure for simulating multichannel Autoregressive (AR) processes in
which intertemporal and interchannel correlations are controlled parametrically.

e Extensions to this synthesis procedure to handle non-Gaussian Spherically Invariant
Random Processes (SIRPs) for K distributions.

e Diagnostics for examining statistical properties of synthesized processes.

e A multichannel signal detection algorithm  based on a generalized loglikelihood ratio
using an innovations approach, including ratios for Gaussian processes and K-distributed
SIRPs.

e A Kalman filter structure for a state-space version of the signal detection algorithm.
e A sensor fusion application of the signal detection algorithm.

e A Monte Carlo approach for exploring the performance of the signal detection
algorithms.

e An extension of the Monte Carlo approach for calculating thresholds for given false
alarm rates based on approximating the tail of a distribution by a Pareto distribution.
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1.2.1 The Multichannel Signal Processing Simulation System

Kaman Sciences Corporation has designed and implemented the Multichannel Signal
Processing Simulation System (MSPSS) to support Dr. Michels’ research program. The
system architecture was defined early, and capabilities were added over a series of projects
(Kaman 91a, 92a, 92b and Vienneau 93 and 94).

The MSPSS is comprised of two major subsystems, a menu-based subsystem and the
User Front-end Interface (UFI) based subsystem. The menu-based subsystem interacts with the
user by a series of menus and prompts that can be displayed on a line-oriented “glass
terminal.” It is implemented as a collection of Fortran programs providing the desired signal
processing capabilities. Multichannel data is passed between these programs by user-defined
files. The menus themselves are Unix C-shells where the bottom-level menu automatically
compiles, links, and executes the desired program. Figure 1-1 shows an example of the
invocation of a Fortran program from the menu-based subsystem.

The structure of the menu-based subsystem provides the user with a great deal of
analytical flexibility. The individual Fortran programs provide certain analytical capabilities,
but minimal constraints are imposed on the order in which the user can invoke these
functions. A number of diagnostic capabilities are provided, including parameter estimation
for certain models, correlation function estimation, and graphical display of data. Thus the
user is provided with a system that supports an exploratory style of analysis.

The UFI-based subsystem is designed for more repetitive analyses characteristic of the
determination of detection probabilities for given false alarm probabilities and given
algorithms. In such analyses, the user needs to invoke certain signal processing synthesis and
analysis functions in a predetermined order with certain parameters. The UFI-based
subsystem supports this need by allowing the user to construct an "experiment” specified by
various algorithms and parameters. Once an experiment has been completely described, a
computer program for performing an experiment is automatically generated, compiled, and
executed. Since these are simulation experiments, the generated program can run for quite
some time. Typically, a single experiment will be used to analyze the performance of the
signal detection algorithm in terms of the false alarm probability and the probability of
detection. A detailed example of the use of this subsystem is provided in the Software User's
Manual for the Multichannel Signal Processing Simulation System (Kaman 92a).

1.2.2 Detection of Unknown Amplitude Signal

The signal detection algorithm, illustrated in Figure 1-2, is quite general. The radar
returns x (n) are entered into two parallel filters. The structure of the filters is based on
models of the returns with and without a signal. If no deterministic signal is present, the
output of the null hypothesis filter, vo(n ), will be a white noise error signal. If a deterministic
signal is present, the output of the alternative hypothesis filter, v,(n), will be a white noise
error signal. The statistic A is used to determiné which filter output provides the minimum
white noise error signal. If it is above some threshold value, a signal is determined to be
detected. Filters with different structures correspond to models of different clutter
environments and different signals. A variety of parameter estimation algorithms may exist for
a given model. The appropriate loglikelihood statistic differs between Gaussian and non-
Gaussian noise.
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The user invokes the menu-based

isaiah.1-52% mchan multichannel system from the Unix shell.
Multi-Channel Detection Algorithm
MAIN MENU

Single Channel Multichannel
M1 -- Process Synthesis M11 -- Process Synthesis
M2 -- Filtering Methods M12 -- Filtering Methods
M3 -- Diagnostics M13 -- Diagnostics
L1 -- List data files L2 -- show the change log
Enter a command or Q to quit: m11 The user chooses a submenu.

MULTI-CHANNEL (M/C) PROCESS SYNTHESIS MENU

MO -- Gaussian noise M2 -- Method 2 (MC2) synthesis
M1 -- Method 1 (MC1) synthesis M3 -- Representative model
M4 -- Method 2 unconstrained quadrature process synthesis

M5 -- State space synthesis

M6 -- Apply Levinson-Wiggins-Robinson algorithm

M7 -- Display Multi-Channel (M/C) signal stats

M8 -- Plot M/C data

M9 -- Perform Nuttall-Strand or Vieira-Morf estimation

MI10 -- Perform Yule-Walker estimation

MI11 -- Estimate AR parameters for each channel

M12 -- Estimate covariance matrix

M13 -- Estimate state space parameters

M14 -- Estimate state space parameters from exact covariance matrix
M15 -- Estimate amplitude of constant signal

M16 -- Perform M/C correlation (temporal)

M17 -- Perform M/C correlation (ensemble)

M18 -- Split a M/C input M23 -- Join inputs
“M19 -- Add M/C signals M24 -- Subtract M/C signals
M20 -- Convert AR parameters to state space
M21 -- Display complex data M25 -- Display coefficient file
M22 -- Catenate M/C signals M26 -- Sum channels
L1 -- List data files L2 -- show the change log

Enter a command or Q to return to the MAIN menu: m3
The user invokes and interacts
with a Fortran program.

Figure 1-1:

Invoking a Fortran Program from the Menu-Based System




Null Hypothesis Ya(n)
Filter Fo

T

x(n) Model Parameter Calculate A
l Statistic

Alternative Hypothesis w(n)
' Filter F,

Figure 1-2: The Signal Detection Algorithm

Not all instantiations of this signal detection algorithm have been implemented in the
MSPSS. Recently, capabilities were added to analyze the detection of a constant magnitude
signal, assuming its amplitude is known (Vienneau 94). Dr. Michels has extended the
detection algorithm to a model of a signal with constant but unknown amplitude, Capab111t1es
for analyzing this case were added under this effort.

1.2.3 Weibull Distribution

Clutter and noise have been modeled as stochastic processes. For example, capabilities
exist in the MSPSS to synthesize the clutter as an AR process. Driving noise for AR
processes and white noise were first implemented as Gaussian noise. Recent research at
Syracuse University and Rome Laboratory has investigated non-Gaussian processes known as
Spherically Invariant Random Processes (SIRPs). SIRPs can be used to model many
probability distributions (Rangaswamy 91, 92, 93a, and 93b). A K-distribution was the only
non-Gaussian SIRP synthesized by the MSPSS prior to this effort. Now a capability exists for
synthesizing Weibull SIRPs in the MSPSS.

1.2.4 Representative Model

The Representative Model is closely related to the synthesis procedure existing in the
MSPSS at the start of this effort. The Representative Model provides control over statistical
properties of simulated space-time data, as calculated from certain parameters characterizing
the phased-array radar platform, the clutter environment, signals, and jammers. The
Representative Model differs from the Physical Model in that it provides greater control over
statistical properties of the simulated radar returns. The radar is described at a higher level of
abstraction, while the Physical Model simulates specific radars, signals, and jammers.

The Representative Model parameters determine "shaping functions" used to calculate
block covariance matrices for the clutter, signal, and interference. The block covariance
matrices, in turn, are used to find either a Cholesky decomposition of the block covariance




matrix, or Autoregressive (AR) coefficients used in simulating the radar returns. The
simulated radar returns are appropriate for testing the performance of a signal detection
algorithm, examining the performance of estimation algorithms, passing through a Fast Fourier
Transform (FFT), etc.

An interesting question is the performance of the signal detection algorithm analyzed by
the MSPSS when applied to data characterized by the Representative Model. The
Representative Model was implemented in the MSPSS under this effort. This implementation
permits the use of diagnostics to characterize data synthesized by the Representative Model,
but does not support convenient examination of the performance of the signal detection
algorithm applied to Representative Model data.

1.2.5 Diagnostics

The MSPSS implemented certain signal processing diagnostic capabilities before the start
of this project. More were added. A previous effort added a capability to estimate the
parameters of a state space model (Vienneau 94). This capability is difficult to test since
estimated matrices may differ from theoretical values by a basis transformation of the state
space and since statistical variation may combine with numerical effects to yield inaccurate
estimates. A capability was added under this project to calculate a theoretically exact block
covariance matrix for an AR process, which in turn is used to estimate the state space
parameters.

Certain capabilities existed at the start of this effort for estimating correlation functions.
Insight into the underlying processes can be obtained by examining the spectrum of
correlation functions. Accordingly, this effort included the addition of a capability to calculate
a two dimensional Fast Fourier Transform (2D-FFT). ’

The radar system simulated by the Represeniative Model can contain up to 14 channels.
Therefore, the number of channels in processes synthesized and analyzed by the MSPSS was
increased from the previously existing bound of four channels, namely to 16 channels.

1.3 Overview of Report

This section consists of an introduction and an overview of the remainder of the report.

Section 2 provides a brief description of the signal detection problem and an overview of
the approach that can be analyzed by the MSPSS.

Section 3 defines new capabilities added to the MSPSS during this effort. Subsections
present the analysis of the detection of a signal with unknown amplitude, the synthesis of a
Weibull SIRP, the representative model, the calculation of state space parameters, and a two
dimensional Fast Fourier Transform (2D-FFT).

Section 4 discusses implementation details for the new capabilities. Examples of how
the new capabilities are invoked are provided.

Section 5 provides references, while appendices describe notation, acronyms, and certain
mathematical details. :




2. THE MULTICHANNEL SIGNAL PROCESSING SIMULATION
SYSTEM

The Multichannel Signal Processing Simulation System (MSPSS) was developed by
Kaman Sciences to support RL/OCTM research. This section briefly describes the signal
processing problems that can be analyzed with the MSPSS and the use of the MSPSS.

2.1 Signal Detection and Statistical Hypothesis Testing

The primary purpose of the MSPSS is to analyze the performance of a signal detection
algorithm. Signal detection can be thought of as a problem in statistical hypothesis testing.
Let x denote a multichannel vector stochastic process representing the radar returns. Radar
returns consist of a time series of complex vectors, where the dimension of the vectors is the
number of radar elements (channels). Let s denote a signal, ¢ denote the clutter, and n denote
white noise. Consider deciding between the null hypothesis

@ Hy.x=c+n
and the alternative hypothesis
® Aiix=5+c +n.
Deciding that a signal is present is to accept the alternative hypothesis.

The Neyman-Pearson theory of statistical hypothesis testing provides control over
probabilities of making an erroneous decision. The significance level, a, of a statistical test is
the probability that a decision rule will accept the alternative hypothesis when the null
hypothesis is true:

a =Pr(Accept H, | Hq true). (2.1-1)

Since to accept the alternative is to decide a signal is present, the significance level is the
probability of false alarm in the signal detection problem.

Another type of erroneous decision is possible. A decision rule can result in a decision
that no signal is present when, in fact, a signal exists. The probability of this mistake, known
as a Type II error, is usually denoted by B. The power of a test denotes the probability of
correctly deciding in favor of the alternative hypothesis. The power is related to the
probability of a Type II error, as shown by Equation 2.1-2:

1 = B=Pr(Accept H, | H, true). (2.1-2)

In signal detection, the power of a test is known as the probability of detection.

2.2 A Model-Based Approach

The MSPSS supports the analysis of a model-based approach to signal detection. In other
words, both the synthesis and the analysis of radar returns are based on certain parameterized
models. (Non-model based approaches are also known as non-parametric approaches.)
Synthesis models currently implemented in the MSPSS include:

e Multichannel Gaussian, K-distributed, and Weibull noise

e Spherically Invariant Random Processes (SIRPs) in which each realization is Gaussian
but the distribution of a time sample across realizations is K-distributed or Weibull.

e Autoregressive (AR) processes with driving noise from SIRP or white noise




e Autoregressive Moving Average (ARMA) models implemented as the sum of AR models
and white noise

e A state space model
e Multipath processes

These models are implemented in an innovations representation. The output process is formed
by modifying a driving noise term. The filters in the signal detection algorithm in Figure 1-2
are designed to produce estimates of the innovations process of the model corresponding to
the appropriate hypothesis. A different filter structure corresponds to each different model
structure. The corresponding loglikelihood statistic is designed to determine which filter output
more closely resembles the modeled process.

For example, Figure 2-1 shows the system structure for synthesizing an AR process. The
input process v(n ) is white noise uncorrelated both in time and across channels. The operator
T adds correlation across channels to produce £(n). The remainder of the structure adds
correlation in time and modifies the correlation across channels. The appropriate filter to
estimate the innovations for this AR model has a tapped delay line structure. ‘

x(n-P) x(n-2) x(n-1) -
r_ z" e T z! 4
A"(P) A"(2) A"(1)

y(n) &(n) x(n) -
» T + — s e + +

Figure 2-1: Synthesis of an AR Process

A state space model (Figure 2-2) provides another powerful example of an innovations
model. In this model, an internal process, a(n), is used to inject intertemporal correlation. In
this case, a Kalman filter provides the appropriate structure for estimating the innovations
process.

The MSPSS provides instantiations of the signal detection algorithm shown in Figure 1-
2. An instantiation is constructed by combining a synthesis model, parameter estimation
algorithms, filters for estimating innovations, and an appropriate test statistic. The MSPSS
allows the user to analyze the resulting algorithm. Thresholds can be calculated for given false
alarm probabilities, and then a corresponding probability of detection can be determined.




a(n+1) a(n)

K H"

v(n) £(n) T
T 7 »@ x(n) -

Figure 2-2: Innovations Representation of a State Space Model

2.3 Diagnostics

Synthesis procedures in the MSPSS provide user-control over characteristics of the
synthesized processes, such as temporal and cross-channel correlation. Since these are
stochastic processes, the synthesized radar returns exhibit a range of random variability.
Diagnostics provide the user a number of ways to examine radar processes.

The MSPSS provides a graphing capability integrated from Khoros (Rasure 92).
Graphical displays can be rotated, annotated, otherwise manipulated, and printed. Statistical
routines are provided for means, variances, correlation functions, parameter estimation,
distribution identification and testing, periodograms, and Fast Fourier Transforms of spectra.
Additional capabilities include various filters and data manipulation capabilities such as adding
processes, combining channels, and splitting channels.

2.4 Signal Detection

The User Front-end Interface (UFI) based subsystem provides powerful capabilities for
analyzing the signal detection algorithm. Analysis sequences allow the user to specify the
model parameters. A Monte Carlo approach is used to estimate filter parameters, thresholds
for given false alarm probabilities, probabilities of detection, and variability in thresholds and
probabilities of detection. The extreme value method (Chakravarthi 92 and Vienneau 94) gives
efficient estimates of thresholds for extremely small false alarm probabilities.

The MSPSS allows the user to determine how the probability of detection varies with
false alarm probabilities and characteristics of the radar returns such as signal to noise ratios.
Different parameter estimation algorithms and different filtering structures can be explored. In
short, the MSPSS allows the user to explore the robustness of the signal detection algorithm
under a wide range of instantiations and circumstances. Published results using this system
are positive so far (Michels 94 and 95).

Section 4 describes the use of the MSPSS for the capabilities added under this effort.
General user information is provided in (Vienneau 93) and (Vienneau 94). (Kaman 92a)
describes how to use the User Front-end Interface (UFI) based subsystem. Procedures for
adding additional capabilities are discussed in (Vienneau 93).
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3. NEW CAPABILITIES

Kaman Sciences has implemented and enhanced the Multichannel Signal Processing
Simulation System (MSPSS) over a series of contracts. The MSPSS was extended under this
effort to include the following capabilities:

e The analysis of the detection of a signal with constant but unknown amplitude in clutter
e The synthesis of a Weibull-distributed Spherically Invariant Random Process (SIRP)

e The synthesis of the Representative Model, originally designed for the Rome Laboratory
Space-Time Adaptive Processing Algorithm Development Tool (RLSTAP/ADT)

e The estimation of state space model parameters from a theoretically exact block
covariance matrix for an AR process

e A two-dimensional Fast Fourier Transform (2D-FFT)
e The extension of all capabilities to 16 channels.

This section defines the capabilities implemented under this effort.

3.1 A Signal with Unknown Amplitude

A new model-based signal detection analysis capability was added. The signal detection
analysis capabilities allow the user to determine the false alarm probability and probability of
detection for specific algorithms under controlled conditions. These signal detection algorithms
are based on models of the signal, clutter, and noise. In this case, the algorithm decides
between the null hypothesis:

Hy x(n)=y(n), n=12,..N, : (3.1-1)
and the alternative hypothesis:
CHy x(n)=s(n)+y(n), n=12,...N. (3.1-2)
The radar return, x (n), is a J-element complex vector. y (n) represents clutter, while s (n) is
the signal.
3.1.1 Clutter Synthesis
The clutter proceés, v (n), is modeled as an Autoregressive (AR) process with white

driving noise:

y(n)==-3 A" (k)y(n—k)+e(n), (3.1-3)
kwml]

where vy (n) and e(n) are J-element complex column vectors and A# (1), A% (2), ..., A" (p)

are JxJ AR matrix coefficients for an AR process of order p.

The driving noise process, £(n), is uncorrelated in time, but possibly correlated across
channels. The correlation across channels is expressed by the /xJ covariance matrix X,

L. =Ele(n)e (n)]. (3.1-4)

The driving noise process is synthesized based on one of three decompositions of the
covariance matrix. The Cholesky decomposition is specified by Equation 3.1-5:
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L =C.CH, (3.1-5)

where C. is a lower triangular complex matrix. The LDU decomposition is specified by
Equation 3.1-6: -

L. =L.D.LY, (3.1-6)

where L. is a lower triangular complex matrix with unity along the principal diagonal and D,
is a diagonal matrix. For a correlation matrix the Singular Value Decomposition (SVD)
reduces to the unitary similarity transformation and is given by Equation 3.1-7:

L =0.A.0f, B.1-7)

where A, is a diagonal matrix whose elements are eigenvalues of .. The columns of Q. are
the corresponding right hand eigenvectors:

Ze(Qe).j = (Az)j,j (Qe).j . (3°1-8)
The rows of QF are the left hand eigenvectors:
(Q¢ )i Ee = (A)ii (Q¥): . (3.1-9)

Since Z, is Hermitian, the Hermitian transpose of Q. is also the inverse of Q..

The driving noise is generated based on either C,, L. and D, or Q, and A,. For each time
sample in the driving noise term, the J-element complex column vector v.(n) is generated.
ve(n) is from a K-distributed Spherically Invariant Random Process (SIRP), a Weibull SIRP,
or a Gaussian distribution. v,(n) is uncorrelated across channels and across time. If the user
chose a Cholesky decomposition, the jth channel of v,(n ) has a variance of unity. If the user
specifed a LDU decomposition or SVD, the jth channel has a variance of (D,);; or (A,
respectively. The driving noise term is then given by Equation 3.1-10:

e(n)=T.v(n), (3.1-10)
where T, is either C,, L., or Q..

The driving noise covariance matrix %, and the AR coefficients A% (1), A% (2), ..., A# (p)
are determined based on a "shaping function" approach (Michels 94). The correlation matrix
for the AR process for the kth lag is defined by Equation 3.1-11:

Ry(k)=Ely(n)yH (n-k)], (3.1-11)
where R, (k) is JxJ. By definition, Equation 3.1-12 follows:
R, (~k)=Rf (k). (3.1-12)

The correlation matrix and the AR parameters are related by the Yule-Walker equations. For
example, the Yule-Walker equations for three lags, p = 3, are given by Equation 3.1-13:

R,(0) R, (1) R,(2) R,(3)
R,(~1) R,(0) R, (1) R,(2)
R, (=2) R,(-1) R,(0) R, (1)
R,(-3) R,(=2) R, (~1) R,(0)
The values of R, (k) are determined by either a Gaussian or Exponential shaping function, and
the Yule-Walker equations are solved to obtain the AR parameters. The synthesis of clutter as

an AR process was already implemented when this project began. See (Vienneau 93) for
further details, including the specification of the shaping functions.

[1 A% (1) A" (2) A”(3)] =[>:e 00 o] (3.1-13)




3.1.2 Synthesis of the Deterministic Signal
The deterministic signal, s (n), is modeled by Equation 3.1-14:

-50.1(71)-

So2(n)

s(n)=ase(n)=a , (3.1-14)

| S0 (n)

 where « is a complex constant equal across all channels and

1'2"("'”%"“‘(9,) j2m(n = 1)f, T sin(8,) (3.1-15)
So; (ﬂ)=€ '4 d LA .

The complex amplitude is specified as

a=Ae’® (3.1-16)
In synthesizing the signal, the user specifies the constant real magnitude A, the normalized
Doppler f,T, the normalized element spacing %, and the angle of arrival 6, of the signal.
The phase ¢, is a random real number between 0 and 2n. This number is fixed for each
realization, but varies across realizations.
3.1.3 Amplitude Estimation

A program was written to estimate the amplitude a of the signal. The parameters of the
steering vector so(n ) are assumed known. These known parameters -consist of

The number of time samples N

The number of channels J

The normalized Doppler f, T

The normalized element spacing ;—

The angle to the signal 6,
In addition to the signal amplitude, the AR parameters of the clutter are assumed unknown.

Amplitude estimation proceeds in two stages. In the first stage, one of three methods is
used to estimate the covariance matrix of the clutter from data generated from the null
hypothesis; that is, with just clutter and noise. In the second stage, the amplitude is estimated
from the estimated covariance matrix and data generated from the alternative hypothesis. Data
from the alternative hypothesis consists of the sum of signal, clutter, and noise.

3.1.3.1 The Sample Covariance Matrix

Suppose K realizations of the interference process are observed. Let y* (1), y*(2), ...,
y* (N ) be the interference for the kth realization, where y* (n) is a J-element complex column
vector, J is the number of channels, and N is the number of time samples. The concatenated
J N column vector y* is formed as in Equation 3.1-17:
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yE(1)
¥y (2)
vl (3.1-17)

YN

The covariance matrix is estimated as the sample covariance matrix given in Equation
3.1-18:

. K
fat TAGHH (3.1-18)
kml
Equation 3.1-18 can be expressed in block matrix form:
£1(0) F(=1) ... F(1=N)
r‘_2(1) F2(0) . . . F(2-N) \
L= (3.1-19)
fn(N=1) iw(N=2). .. FW(@0)
where | |
K
()= Ty (D (=D (3.1-20)
k=l

3.1.3.2 Time/Space Averaged Estimator

In a stationary process, it seems reasonable that estimates of the same lagged correlation
matrix based on different time samples, e.g. 7, (1) and #,,(!), should be close in some sense.

For nonnegative lags, time averaged estimates are found by averaging over time samples:

N
#h=g T @@ -DY (3.1-21)
n={+]
for biased estimates, and
N .
H)=m I A a-DY (3.1-22)
nmi+]

for unbiased estimates. Equation 3.1-23 can be used to estimate lagged correlation matrices
for negative lags:

FEC=D) = [FECIT . (3.1-23)
The time averaged estimates of the lagged correlation matrices can now be averaged over
many realizations of the clutter. Since in practice these realizations will correspond to

different range cells, this step is known as space averaging. The time/space averaged
estimators of the correlation matrices are given by Equation 3.1-24:

K
frs(1)=% Y (). (3.1-24)

k=l
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The time/space averaged estimate of the covariance matrix is a block matrix formed from the
time/space estimates of the lagged correlation matrices:

Frs (0) Frs (1) . . . fis(l=N)
Frs (1) Frs(0) . . . Fs(2-N)
£= (3.1-25)
Ffrs(N =1) Fg(N=2) . . . rrs(0)

This matrix estimate has block Toeplitz form. However, we emphasize that this estimate is
not necessarily positive definite.

3.1.3.3 Time/Space Averaged Estimator with Time Clipping

More data is available for lower lags in calculating time/space averaged estimators of the
lagged correlation matrices. Estimates of lagged correlation matrices for high lags will be less
accurate and show more variation than those for lower lags. Time clipping (Huang 88) is a
modification to the time/space averaged estimators intended to correct for this effect. For
nonnegative lags [/, the biased time averaged estimate with time clipping of the lagged
correlation matrices is given by Equation 3.1-26:

N
N Y yEm)Iyf ()T
Y yHm)yk(n - D] (3.1-26)
=i B ACRISHCIIN

nwl+l

[%(1)]:',; =%n

The unbiased estimate for nonnegative lags is given by Equation 3.1-27:

N
| y Y v lyf(m)T
(D], =57 T s - DT =5 (3.1-27)
meied Y yEm)IyET

nml+l

For negative lags, the biased estimate with time clipping is given by Equation 3.1-28:

N
1y I ACRISACIN
v L -1k =5 : (3.1-28)
nwmlll+] Z _v,"(n)[yf(n)]

nwmill+l

(Ae)],, =

The unbiased estimate for negative lags is given by Equation 3.1-29:

N
N Y yE(n) Lyf ()Y
(A )],, = T gk - DT ! (3.1:29)
(D) N_llln-|l|+l Z v‘k(,,)[yf(,,)]* E

naill+l

The remainder of the algorithm closely resembles the time/space averaged estimate. The
time/space averaged estimate with time clipping is found by averaging the time averaged
estimate with time clipping over many realizations of the clutter:
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K
sc (D=2 X el (3.1-30)

kwl

The estimate of the covariance matrix is formed in the usual way:

Frsc (0) Frse (=1) . . . Fse(1=N)
Frsc (1) Frsc(0) ... Frsc(2-N)
£= (3.1-31)
Frsc (N =1) Frsc (N =2) . . . Frsc(0)

3.1.3.4 Estimating the Amplitude .
The amplitude o consists of a magnitude A and phase ¢,.
a=Ae’® (3.1-32)

Given a realization of the sum of signal and clutter, the amplitude o can be estimated as in
Equation 3.1-33:
s £y

sH s,

(3.1-33)

a =
where x is a J N-element complex vector formed by concatenating together the radar returns

for each time sample:

()]
x(2)

x=| | (3.1-34)

Lx (N).

The radar returns are assumed to be the sum of signal and clutter in estimating the amplitude.

5o is the (known) J N -element complex steering vector:

[ s0(1) ]
50(2)

(3:1-35)

So =

.SO(N ).
and so(n) is given by Equation 3.1-15.

The phase ¢, can be estimated if the magnitude A of the amplitude is known. The
estimator is

bo= L Pe (3.1-36)

where
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L

sEE !y

£,

B +jBg = (3.1-37)

If the covariance matrix is known, the actual value T may be used instead of an estimate in
Equations 3.1-33 and 3.1-37.

3.1.3.5 Inverting the Covariance Matrix

The inverse of the estimate of the covariance matrix is used in Equations 3.1-31 and
3.1-37. Since £ can be a large matrix, numerical problems may arise in calculating an inverse.
A clever method of inverting £ is based on an SVD decomposition. Let

£=UAVH, (3.1-38)

where A is a diagonal matrix of singular values, the columns of U are the corresponding left
singular vectors, and the columns of V are the right singular vectors. Consider the product:

Fla(UAVEY = (V) IATU (3.1-39)
Since U and V are unitary matrices:
vH =y (3.1-40)
and
U =yt (3.1-41)
Thus,
St=v(aytut (3.1-42)

For a positive definite Hermetian matrix £, U =V so that the SVD reduces to the eigen
decomposition: ‘

£=0A0%, (3.1-43)
where A now contains the eigenvalues of £ and Q =U =V. The problem of finding an inverse
for the estimated covariance matrix has then been reduced to an SVD and finding the inverse
of a diagonal matrix.

3.1.4 Filtering

Prediction error filters are provided to transform the radar returns to white noise
uncorrelated in time and across channels. The results of these transformations are estimates of
the innovations process for the models upon which the filters are based.
3.1.4.1 Innovations for White Noise

A simple special case arises when the clutter is white noise uncorrelated in time, but
possibly correlated across channels. This case can be regarded as a special case of the AR
process described in Section 3.1.1, where the order p is zero. If the radar returns consist
solely of clutter modeled by white noise, then Equation 3.1-44 holds:

x(n)=y(n)=e(n)=Tv(n), n=12,..N. (3.1-44)

where some subscripts have been dropped. The correspondmg linear filter is defined by
Figure 3-1 or Equation 3.1-45:

v(in)=T"'x(n), n=12,...N. (3.1-45)
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g(n) v(n)
—_—| T —

Figure 3-1: The Linear Filter for White Noise

Multiplying the radar returns by the inverse of T removes correlation between channels, where
T is formed from the decomposition of the /xJ covariance matrix for the noise. In practice,
the covariance matrix must be estimated. A procedure for estimating the (zero-lag) covariance
matrix already existed at the start of this effort. The linear filter in Figure 3-1 was previously
implemented as well.

3.1.42 Innovations for Temporally Correlated Clutter

The more general case of clutter, or the sum of clutter and noise, modeled as an AR
process also already existed. If the radar returns consist solely of such an AR process, the
linear filter shown in Figure 3-2 removes correlation in time and across channels. The tapped
delay line structure implements Equation 3.1-46:

x(n) x(n-1) x(n-P)

A1) A"(2) AY(P)

£(n) v(n)

Figure 3-2: The Linear Filter for an AR Process
ge(n)=x(n)+ f} AT(K)x(n-k), n=12,..N. (3.1-46)
.o k=l

- Cross-channel correlation is removed by Equation 3.1-47:
v(n)=T"¢(n), n=12,..N. (3.1-47)
AR parameters can be estimated by the Yule-Walker, Nuttal-Strand, or Vieira-Morf algorithms

(Marple 87).
3.1.4.3 Innovations for a Constant Signal in Clutter

A new filter was written to estimate the innovations in the model given by Equation 3.1-
2. In this model, the radar returns consist of a signal with constant but unknown amplitude in
clutter modeled as an AR process. The corresponding filter is shown in Figure 3-3. The first
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part of the filter, given by Equation 3.1-48, removes the signai:
| y(n)=x(n)=dsg(n). n=12..N. (3.1-48)

The linear filter F, corresponds to the filter for the null hypothesis as shown in either Figure
3-1 or Figure 3-2. The outputs from the null hypothesis filter F, and the alternative
hypothesis filter, 7, shown in Figure 3-3, are used to calculate a generalized loglikelihood
statistic used in signal detection. .

x(n)
X(n)-asy(n)

Linear v(n)
Filter F, >

S(n)

x(n) Estimate
' — ™ Amplitude <—J

Figure 3-3: The Linear Filter for Signal and Clutter

3.2 Weibull Clutter Synthesis

This effort included the addition of a capability to synthesize Weibull-distributed
Spherically Invariant Random Processes (SIRPs). Weibull SIRPs are useful for modeling
terrain clutter. Time samples from a given range bin might follow a Gaussian distribution,
but a given time sample might be Weibull-distributed across range bins (Rangaswamy 91).

3.2.1 Weibull SIRP White Noise

Let w (1), w(2), .., w(N) be white noise uncorrelated in time but possibly correlated
across channels. Each time sample w(n) is a J element (column) vector, where J is the
number of channels. The cross-channel correlation is specified by the / x J covariance matrix
I, defined in Equation 3.2-1:

L, =E[w(n)wf(n)]. (3.2-1)

w# (n) denotes the Hermitian transpose of w (n). Equation 3.2-1 implies that the covariance
matrix I, is Hermitian.

The user of the MSPSS has the option of either specifying the covariance matrix I,
directly or the Cholesky, LDU, or Singular Value Decomposition of the covariance matrix.
The Cholesky decomposition is given by Equation 3.2-2:
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£, =C,CH. (3.2-2)
where C,, is a lower diagonal complex matrix. The LDU decomposition is
' L, =L,D, LY, (3.2-3)

where L, is a lower triangular matrix with unity along its diagonal and D, is a diagonal
matrix.

Since I, is Hermetian, the Singular Value Decomposition (SVD) of &, is given by
Equation (3.2-4):

5, =0, A, Q. (3.2-4)

A, is a diagonal matrix whose elements are the singular values of Z,. In this case, the
singular values are also the eigenvalues of the matrix Z,. The columns of Q, are right hand
eigenvectors of I,, and the rows of QF are left hand eigenvectors. Furthermore, Qf is the
inverse of Q, . '

The decomposition of the covariance matrix allows for the control of cross channel
correlation of white noise. Let

w(n)=Tw.v(n). (3.2-5)

where T, is either C,, L,, or Q,, depending on which decomposition is chosen by the user.
v(n) is a white noise process uncorrelated both in time and across channels. If the Cholesky
decomposition is chosen, each channel of v(n) has a variance of unity. If the LDU
decomposition is desired, the variance of the jth channel of v(n) is the corresponding element
along the principal diagonal of D, . Finally, if a SVD is chosen, the channel variances are the
diagonal elements of A,. Equation 3.2-5 then ensures that the resulting white noise process
w (n) has the desired cross channel correlations and autocorrelations.

Formerly, the MSPSS supported the generation of Gaussian and K-distributed Spherically
Invariant Random Processes (SIRPs). Under these synthesis procedures, v(n) is synthesized
from the desired distribution, either Gaussian or a K-distributed SIRP. The resulting process is
then transformed to introduce cross-channel correlation.

The MSPSS now supports the synthesis ‘of Weibull distributed SIRPs. Appendix B
describes the Weibull distribution. The generation of SIRPs is most easily explained by first
considering the special case in which the channel variances are unity and no correlation exists
either across channels or in time. Accordingly, let &(1), £(2), ..., E(N) be a Weibull-
distributed SIRP with a mean of zero and identity as the correlation matrix. Each time sample,
E(n), in the SIRP is a / element column vector:

-51('1 )T
E(n)

E(n)= . (3.2-6)

& ()

where J is the number of channels. The entire process can be expressed as a J N element
column vector formed by concatenation:




e ]
E(2)

e=| | (3.2-7)

- LE(N)]

The distribution of a SIRP is completely specified by the mean, correlation matrix, and a
certain quadratic form, q. Let M be the block-structured correlation matrix:

M=E[EE]. (3.2-8)

In the special case considered here, the correlation matrix is the identity matrix. The quadratic
form g is then defined as follows:

q=E'ME. (3.2-9)

If the SIRP under consideration is complex, the Probability Density Function (PDF) of the
quadratic form ¢ is given by:

S S 7

f”’(q)_Z”’F(NJ)q hans(q). ¢ >0, (3.2-10)

where I'( ) is the Gamma function. For Weibull-distributed SIRPs,

» NJ Ak Q_NJ b
hans(q)=(=27 ¥ B K 2 exp(-A g?), (3.2-11)

kml ¢
A=ad, (3.2-12)
k m[k]-""' mb _, 3.2-13
Bom Ly IL| 5 =1 e
2

Ll 2] 3.2-14
_2{0 I‘[l+b]-—1. _ | ( )

o? is the variance of the Weibull distribution. The parameter b, 0 < b < 2, is specified by the
user, while a is set such that the variance is unity. If the SIRP is real, then Equation 3.2-10
is replaced by Equation 3.2-15:

NJ

1 1
fo@)=—7—F—597> mi(q). q>0.

LT (3.2-15)

2

The generation of Weibull-distributed SIRPs relies on the properties of a generalized
spherical transformation of the SIRP. This coordinate transformation expresses the SIRP as a
function of the / N random variables R, ©, ®;,,n =1,2, ., N;j=1,2,..,Jifn <N,j=1,
2, .., J=2if n = N. The generalized spherical transformation is given by Equations 3.2-16
through 3.2-21:

&1(1) =R cos(Py,). (3.2-16)
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k=]

-1
£ (1) =R cos(d;,) [] sin(®y,). j =2.3....J . (3.2-17)

J n-1

I1 I sin(y s

kj=lkyml

j=~1
H Siﬂ(q)k.,,)
k=l

E;j (n)=R cos(®; ) j=lo.J. =2, N-1. (3.2-18)

=1
E (N)=Rcos(dy) ]H sin(Py v ) L j=L2...J-2 (3.2-19)
k=l

J N-1 .
|:H I_I Sm((bkl*z)

kymlkgml

7-2 17 7 ~n-1

E-1(N)=Rcos(®)| [T sin(dp) [H IT sin(® ). (3.2-20)
k=1 |k =1k,=1
J-2 [ J N-1

& (N)=Rsin(@)| T] sin(®x)| | TT I sin( )] . (3.2:21)
kml _kl-lkznl

The random variable R is the distance of the Spherically Invariant Random Vector from the
origin in the generalized spherical coordinate system. Its distribution does not depend on the
other generalized spherical coordinates. This independence is the defining property of
Spherically Invariant Random Vectors and SIRPs.

Note that Equation 3.2-22 holds for the special case of a SIRP in which the correlation
matrix M is identity:

R?=FE=¢q. (3.2-22)
When the SIRP is complex, the distribution of R is:
fe(r) e = L (). (3.2:23)
oM -IpNyy T '
When the SIRP is real, the distribution of R is:
NIT-1
fR(r)= NJ" th(fz).
S ]I‘[ Nj] (3.2-24)
2

Note that iy, (r?) is only defined for even N J. Either the number of channels or the number
of time samples in a réal Weibull SIRP must be even.

This brief discussion of some of the properties of SIRPs provides some indication of the
theory underlying the algorithm for generating Weibull-distributed SIRPs that is implemented
in the MSPSS:

° Step 1: Generate a white Gaussian process z (1), z (2), ..., z (N) with a mean of zero
and a correlation matrix of identity. The Gaussian process should be complex or real,
depending on whether the synthesized SIRP is complex or real, respectively. Each
element of the Gaussian process z (n) should have / channels.

. Step 2: Calculate the norm R; of the generated Gaussian process. The norm is
defined by Equation 3.2-25:

Ro=Al £ T 1z(m)l2. (3.225)

j=lnml




o Step 3: Generate a single realization of the random variable R. R has the distribution
given by the PDF in Equations 3.2-23 or 3.2-24. R is generated by the rejection method,
as described in Appendix C.

e Step 4: Generate the white SIRP £(n ): '

gn)= SR (3.2-26)

In the general case, each channel of v(n) may have different variances, each of which
may differ from unity. The process v(n) is generated from &(n) by use of Equation 3.2-27:

vi(n)=0, & (n), j=12...0in =12..N, (3.2-27)

where oy, is the standard deviation of the jth channel of v(n). Cross-channel correlation is .
then added using the decomposed covariance matrix as in Equation 3.2-5.

The MSPSS generates a user-specified number of trials of white noise. The user is given
the option of generating each trial as a single realization of the SIRP or generating each time
sample within the white noise process as a separate realization of the SIRP. Furthermore,
separate channels can be a single realization of the SIRP, or each channel can be generated
independently. These options leave the user with four choices, only three of which are
possible for real processes:

e The white noise process is a single realization of the SIRP. Each element E; (n) appears
as a Gaussian process within a single realization of the white noise. (Either the number
of channels or the number of time samples must be even in a real SIRP.)

o The white noise process is generated as J realizations of the SIRP with each channel
generated separately. (The number of time samples must be even in a real SIRP.)

e Each time sample is generated as a separate realization of the SIRP with J channels.
(The number of channels must be even in a real SIRP.)

e Each channel and each time sample is generated as a separate realization of the SIRP. In
effect, each element &; (n) is generated from a Weibull distribution. (This option is not
possible in a real SIRP.)

These options affect the appropriate values to use for the number of channels and the number
of time samples in the synthesis procedure defined above.

3.2.2 An AR Process with Weibull Driving Noise

Capabilities were added to use Weibull SIRPs as driving noise terms in various models
with temporal correlation. These capabilities were added by modifying previously
implemented models. For example, consider a clutter process, y (n), modeled as an AR
process as in Equation 3.2-38:

y(n)==F 4% (kK)y (n k) +Tv(n), (3.2-28)
k=l .
where T is either C, L, or Q in the Cholesky, LDU, or Singular Value Decomposition,
respectively, of the driving noise covariance matrix I. v(n) can be a Weibull SIRP
synthesized as described in Section 3.2.1.




3.3 The Representative Model

A capability for synthesizing "Representative Model" processes was added to the MSPSS
under this effort. Multichannel radar returns x (n) are synthesized in the Representative
Model as the sum of signal, clutter, and interference processes:

x(n)=s(n)+c(n)+I(n), 3.3-1)

where s (n) is the signal, ¢ (n) is the clutter, and 7 (n) is the interference. One can think of
each realization of the Representative Model as representing the radar returns from another
range bin.

33.1 Signal

The signal can be modeled as a constant magnitude signal or a random signal. Let N
denote the number of time samples in the radar returns, and let M be the number of channels.
Then each time sample in the signal is a M-element vector, as shown in Equation 3.3-2:

—Sl(”)-
s2(n)

(3.3-2)

.s(n)=

| su (1) ]

33.1.1 Constant Magnitude Signal

The constant magnitude signal model is given by Equation 3.3-3:

22VTT(m - 1) Lsi ,
N1 (m )lsm(%)ezrf——l(n—l)(fde+fdsT)sm(¢,)+0,n=l,2’m’N;m=l,2’m’M,(3_3_3)

Su(n)=ae
where

e a is the amplitude

° % is the normalized element spacing

fup T is the normalized platform Doppler center frequency

fus T is the normalized signal Doppler center frequency

¢, is the angular direction to the signal (in radians)
e 0 is the initial phase.

The initial phase can be either user-specified or a random variable. If the initial phase is
random, 6 is from a uniform distribution on [0, 2x]. When random, 6 is constant for each
realization of the signal process, but varies from realization to realization.

3.3.1.2 Random Signal

The random signal model is specified by transforming a one-channel stochastic process,
s (n), to a multichannel process, as shown by Equation 3.3-4:

20T (m - 1) sinco,) (3.3-4)

Sm(n)=s"(n)e ,n=12,.,.N;m=1,2,.M.

This model assumes that the process s’ (n) contains all the temporal correlation. The signal




amplitude is the same for all channels but is phase-shifted across channeis.

The autocorrelation of the process s’ (n) is controlled by a "shaping function" approach.
The lagged autocorrelation function for the process is defined by Equation 3.3-5:

R (L)=E[s (n)s" (n-1)], (3.3-5)

where s’* (n) is the complex conjugate of s’ (n). In the shaping function approach, the lagged
autocorrelation function is specified as in Equation 3.3-6:

J__ .
R, (L) =o2Fs(l)e?™ ‘hlapT +fus Dsinte) (3.3-6)

where F7(/,) is a temporal "shaping function," either Gaussian or exponential. Equation 3.3-7
defines the Gaussian temporal shaping function:

FiCh) = ()" (3.3-7)
The exponential temporal shaping function is defined by Equation 3.3-8:
Fi(h) =)' (3.3-8)
The covariance matrix is constructed from the individual lags as in Equation 3.3-9:
[ R(O)  R(1) ... R(p)
Ry (1)  Rg(0) ... R(p-1)
R, = : : ‘ ' , (3.3-9)
(R (=p) R;(=p +1) . . . R (0)

The one-channel stochastic process s’ (n) is synthesized by either a block procedure or as an
AR process. In the block procedure, a Cholesky decomposition is found for the covariance
matrix:

R, =C,CH, (3.3-10)

where C; is a lower triangular matrix. The desired process s’ (n ) is found by transforming a
zero-mean, unit variance process v(n ):

(s (1) ] (v(1)]
s (2) v(2)
=c,| = |, , (3.3-11)
Ls" (p)] Lv(p )]
s(n)= i (CsYpjV(n+j=-p), n=p+1,p+2..N, (3.3-12)
j=1

j=
where v(n) is uncorrelated in time. The user is given the option of choosing v(n) from a
Gaussian distribution, K-distributed SIRP, or Weibull-distributed SIRP. Equation 3.3-11 shows
how to generate the first p elements of 5" (n). Theoretically, the order p of the covariance
matrix should be set equal to the number of time samples N. The user, however, is given the
option of choosing an order p less than N, in which case Equation 3.3-12 is used to
synthesize the last N -p time samples.




In synthesizing s'(n) as an AR process, the Levinson-Wiggins-Robinson algorithm is
used to solve the Yule-Walker equations shown in Display 3.3-13:

(R©) R ... RG)]
R(-1) RO . ..R@p-

[1 a;('l) a2 . . . a;(p)] o - [63 0. 0] (3.3-13)
R-p) Ri(-p+D) . . . R |

The process s’ (n) is synthesized as the AR process shown in Equation 3.3-14: .
p E
S(n)y== 3 a; (k)s(n-k)+v(n), (3.3-14)
k=1

where v(n) is a zero mean process uncorrelated in time. The variance of v(n ) is o2, and the
user is given the option of choosing v(n ) from a Gaussian distribution, K-distributed SIRP, or
Weibull-distributed SIRP.

3.3.2 Clutter

The spatial and temporal properties of the clutter do not separate so elegantly. The clutter
model is specified by controlling the block covariance matrix for the clutter, shown in
Equation 3.3-15:

[ R(0)  R() ... R(p)
R(-1) R(0) ...R(p-1)
R =| ' ' ' , (3.3-15)
[ Re(=p) R.(=p+1) . .. R(0)
where _
Ro(L)y=E[c(n)c(n-1)], - (3.3-16)

and ¢ (n) is the clutter process. Since the radar is assumed to have M channels, each time
sample in the clutter process is an M-element vector. Therefore each entry in the block
covariance matrix R. is itself an MxM matrix. Equation 3.3-17 shows an expansion of one
matrix:

[Rui(h) Ria(h) - . . Ruw(h))
Roa(l) Raa(lh) . . . Ryp(l)

R(ly=| - : (3.3-17)
_RM.l(lr) Rya(l) . .. RM.M(I:)J

Block covariance matrix elements are controlled by the function in Equation 3.3-18:

20711, Lsin (89) 2nvT in -
Rij(L)=0;0;F (I, )F, (ls)e AR 2R fap TSin (80) (3.3-18)

where




e o; and o; are the standard deviations of the two channels

F,(l4) and F; (I ) are temporal and spatial shaping functions, respectively

—i— is the normalized element spacing

¢o i1s the angular beam direction

fap T is the normalized platform Doppler center frequency.

The spatial index is the difference of two channels:

l,=j—i. (3.3-19)
The indices /, and /; represent a rotation of the spatial and temporal indices to account for
platform rotation:
la Cos o. ~Sin (x- L
[IJ = [sma Cos o | [1] (3.3-20)
where '
]
far T
=Tan™! | ~— 3-21
a=Tan { i (3.3-21)

The temporal shaping function, F,(/), can be a Gaussian, exponential correlation, or
exponential power spectrum temporal shaping function. The Gaussian temporal shaping
function is defined by Equation 3.3-22:

Fo(b) =, (33-22)

where p, is the one-lag temporal correlation parameter. Equation 3.3-23 defines the
exponential correlation temporal shaping function:

Fo(ly)=p ' (3.3-23)

Equation 3.3-24 defines the exponential power spectrum temporal shaping function

F,(l)= 0.1<¢. (3.3-24)

G+@ryil’
The spatial shaping function, F,(l3), can be a Hanning, Hamming, Blackman-Harris or
Gaussian spatial shaping function. The Hanning, Hamming, and Blackman-Harris spatial
shaping functions are special cases of the function defined by Equation 3.3-25:

(N - l)sinot+ (J - 1)cosa

F:(la)={B+(l - B)Cos ) ]}Cosz(q)o) (3.3-25)

The Hanning function results when $=0.5, the Hamming when B =0.543478261, and the
Blackman-Harris when B =0.53856. The Gaussian spatial shaping function is defined by
Equation 3.3-26:

Fy (Ig) = 11, Cos? (40) (3.3-26)

As with the Representative Model of the signal, both a block procedure and an AR
process model are provided for synthesizing the clutter. The block procedure is based on a
Cholesky decomposition of the block covariance matrix:
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R.=C.CH, (3.3-27)

where C, is a lower triangular matrix, which can be thought of as a block matrix also. The
clutter is synthesized as defined by Equations 3.3-28 and 3.3-29:

[c(1)] [v(l)
c(2) v(2)
=c.| |, (3.3-28)
Le (p )] LV(p )]
c(n)= ﬁ (Cepjv(n+j—-p), n=p+1,p+2,.,N, (3.3-29)
=1

i=
where (C, ), ; is the (p,j)th element of the matrix C,.

The AR process model is based on the solution to the Yule-Walker equations given in
Display 3.3-30:

RO RD ... R |
R RO ... R@-

[1 Al Aoy . .. A:’(p)] - - = [}:c 0. .. o] (33-30)
R(p) Re(p+D) . .. RO

The solution is found by the Levinson-Wiggins-Robinson algorithm. The clutter process ¢ (n )
is synthesized as in Equation 3.3-31:

cny=- % AB(k)e (n —k)+Tv(n), (3.3-31)
k=1

where T is either C, L, or @ in the Cholesky, LDU, or Singular Value Decomposition of the
driving noise covariance matrix .. v(n) is a zero-mean process uncorrelated both temporally
and spatially. Channel variances of v(n ) are unity for the Cholesky decomposition, and v(n )
can be synthesized from a K-distributed SIRP, Weibull-distributed SIRP, or Gaussian
distribution.

3.3.3 Interference

Two models are provided for interference, a direct path white noise interference model
and a direct path partially correlated noise interference model. Capabilities exist in the
MSPSS for adding together several synthesized processes. Thus, the user can synthesize
interference for several jammers separately, and then add the results together.

3.3.3.1 Direct Path White Noise Interference Model
The direct path interference model is defined by Equation 3.3-32:

d ..
2eV=1(m -I)ISln(Q,)e,g\J:T,,(fdpr +fyT)Sin(¢))

In(n)y=1r(n)e ,n=1,2,...Nym=1,2,..M, (3.3-32)

where /' (n ) is a zero-mean white noise process with variance c?. Other parameters consist of:




-% is the normalized element spacing

¢, is the angular direction to the jammer (in radians)

fap T is the normalized platform Doppler center frequency

fa T is the normalized interference Doppler center frequency

The user is given the option of choosing I’ (n) from a Gaussian distribution, K-distributed
SIRP, or Weibull-distributed SIRP.

3.3.3.2 Direct Path Partially Correlated Noise Interference Model

The direct path partially correlated noise interference model closely resembles the
random signal model, with a difference of a factor of two in some terms. The interference is
found by transforming a one-channel partially correlated noise process r (n), as shown in
Equation 3.3-33:

2T (m - 1) £ in (87)

L(n)="F(n)e n=1,2,..Nim=1,2,.M. (3.3-33)

Intertemporal correlation of 7' (n ) is controlled by the function defined in Equation 3.3-34:

Ry (4)=E LI (n)I" (n)] = oFFl(L )™ " T +fa IS, (3.3-34)
where F/(l,) is either a Gaussian or exponential temporal shaping function. The Gaussian
temporal shaping function is defined by Equation 3.3-35:

e (3.3-35)

Ftl_(lr)= (K

where p, is the one-lag temporal correlation parameter. The Exponential temporal shaping
function is defined by Equation 3.3-36:

Flchy =)™, (3.3-36)
The covariance matrix for the interference is constructed from the individual lags:
[ RO) R ... R(p) |
Ri(-1y R(0) ...R(p-1
R, = (3.3-37)
| Ri (=p) Ry (=p +1) . .. R(0)

Both a block procedure and an AR model are provided for synthesizing the one-channel
stochastic process I’ (n). A Cholesky decomposition of the block covariance matrix is used in
the block procedure. The Cholesky decomposition is defined by Equation 3.3-38:

R, =C, CH, (3.3-38)

where C; is a lower triangular matrix. The desired process I (n) is found by transforming a
zero-mean, unit variance process v(n):
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(r ()] (v
r(2) v(2)
=c| |, (3.3-39)
LI (p )] Lv(p )]
P
I'iny= 3 (C)jvin+j=p), n=p+1p+2,..,N, (3.3-40)

j=1
where v(n) is uncorrelated in time. The user is given the option of choosing v(n) from a
Gaussian distribution, K-distributed SIRP, or Weibull-distributed SIRP. The first p time
samples in I (n) are synthesized as in Equation 3.3-39, while the remaining N -p time
samples, if any, are synthesized by Equation 3.3-40.

The synthesis process for I'(n) as an AR process begins by using the Levinson-
Wiggins-Robinson algorithm to solve the Yule-Walker equations shown in Display 3.3-41:

(RO RO ... Re)
R(-1) RO ... R@E-1

[1 ') a2 . . . a,*(p)] . =[0,2 0... o] (3.3-41)
Rip) Rip+1) . . . Ri(O) |

The process I’ (n) is synthesized as the AR process shown in Equation 3.3-42:
rny=-3% a’ (k)1 (n —k)+v(n), (3.3-42)
k=1

where v(n) is a zero mean process uncorrelated in time. The variance of v(n ) is o7, and the
user is given the option of choosing v(n ) from a Gaussian distribution, K-distributed SIRP, or
Weibull-distributed SIRP.

3.4 A Two-Dimensional FFT of Clutter Covariance Matrix

A capability was added to graph a two-dimensional Fast Fourier Transform (FFT) of the
covariance matrix for the Representative Model clutter (Section 3.3.2). This covariance matrix
is not estimated, but is determined using the shaping functions.

The clutter covariance matrix, R, can be represented as in Equation 3.4-1:

[ re (1= 1=N) re(1=J,2=N) . . . r(1=J.N—=1)]
ree (2=J,1=N) re(2=J,2=N) . . . r.(2-J,N =1)

R, = : . - ) (34-1)
Fe (J=L1=N) re(J =1L2=N) . . . re(J = LN =1)

Each element of the 2/ - 1 x 2N - 1 matrix R, specifies a correlation:
ree (s ) = E [¢j (n)cj,(n =1,)] (3.4-2)

where




15'_‘1.2_].1. jl,j2=l.2....,./, (34-3)

and J is the number of channels. The spatial correlation is assumed to depend only on the
difference between channels, not the particular pair of channels selected. Using the shaping
function approach, the elements of the covariance matrix are specified by Equation 3.4-4:

. 20V, L Sin (80) 27vTT1 £ T Sin ¢ -
re (L) =GP F (L) Fy(lg)e % et e T (344

where
° o is the channel standard deviation (assumed constant across channels)

° F,(l,) and F,(ly) are temporal and spatial shaping functions, respectively, as specified
in Equations 3.3-22 through 3.3-26

° % is the normalized element spacing

° o is the angular beam direction
° fap T is the normalized platform Doppler center frequency.

The indices I/, and I; are found by rotating the spatial and temporal lags, as given by
Equations 3-3-20 and 3-3-21. Equations 3.3-20 and 3.3-21 are repeated for convenience as
Equations 3.4-5 and 3.4-6: :

[IA] _ C(:7S o —Sin (JL1 I:lr] (3.4-5)
Ig Sino Cos o ||
-1 | (3.4-6)
- d/\ | )

The covariance matrix R, is first windowed before applying a two-dimensional FFT. The
window is created by using the Dolph-Chebychev weights given by Equation 3.4-7:

K
Welp) = %{S +2 3T, —1[20005[%]} cos{ 27;" [k _L ; ! ”} k=1,2,..p, (3.4-7)

n=1

where
5 =107, (3.4-8)
o is the sidelobe level (in decibels),
_%1‘ p odd
K= (3.4-9)
%— I, p even
20 = cosh [E‘li"-i(il} , (3.4-10)
p -1
and
cos[(p —1)Cos7'(2)] iflzl<1 3.4-11
Tp -1z ={cosh[(p—l)Cosh"(z)] iflzl<1” 3. )

The Dolph-Chebychev weights for the temporal dimension are given by Equation 3.4-12:
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w_y 0 0
0 w_y
Q= s (3.4-12)
0 o ... Oy -1 |
where
@, =W,y (N =1), n=1-N,2-N,.,N 1. (3.4-13)

The Dolph-Chebychev weights for the spatial dimension are given by Equation 3.4-14:

o-; 0 ... 0
0 w.;... O
Q=| o ) (3.4-14)
0o e
where
0 =W,/ -1), j=1-J,2-J,.,J-1. (3.4-15)

The window is formed as in Equation 3.5-15:
R, =QsR,.Qr ~ (3.4-16)

A two dimensional FFT is the applied to R’.. The particular implementation used in the
MSPSS is based on the algorithm used in Khoros.

3.5 Calculation of State Space Parameters

State space synthesis and analysis capabilities were implemented in the MSPSS under a
previous effort (Vienneau 94). These capabilities included a fairly complex algorithm for
estimating the parameters of an innovations representation of a state space process based on
the block covariance matrix. The block covariance matrix is estimated from realizations of the
process. The state space parameter estimates are often difficult to validate due to the
possibility of a basis transformation of the state vector. Thus, it is difficult to test the
estimation algorithm.

A capability was implemented under this effort for determining state space parameters
from a block covariance matrix calculated analytically. The covariance matrix used as input
to the state space estimation algorithm no longer contains statistical variation, unlike those
estimated from a synthesized process. This capability is intended to simplify the testing of the
. estimation algorithm. The block covariance matrices are limited to those corresponding to an
Autoregressive (AR) process.

A stationary state space process can be described by the innovations representation given
in Equations 3.5-1 and 3.5-2:

a(n+1)=Foa(n)+Ke(n), (3.5-1)

x(n)=HHa(n)+e(n). (3.5-2)

a(n) is an m element (column) vector representing the state variables, where m is the order of
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the process. x(n) is a J element (column) vector denoting the process output. The mxm
matrix F determines how the state variables evolve through time and is known as the system
dynamics matrix. K is an mxJ/ matrix known as the Kalman gain, and H is the mxJ
observations matrix. The J element (column) vector € (n ) denotes driving noise, and is called
the innovations process. The covariance matrix for the innovations process is defined by
Equation 3.5-3:

T=E(e(n)e"(n)]. (3.5-3)

Many of the capabilities provided by the MSPSS relate to AR models. A pth order AR
model is defined by Equation 3.5-4: '

x(n)== 3 A" (k)x(n—k)+e(n). (3.5-4)
k=1

This AR process can be cast into an innovations representation of a state space process. The
p J state variables consist of the first p lagged values of the process:

(x(n-1)]
x{(n-2)
a(n)= (3.5-5)
Lx(n~-p)]
The system dynamics matrix for an AR process is given by Equation 3.5-6:
(A% (1) -4 @) - —Af(p—1) A" (p)]
I 0 ce 0 0
0 1 S 0 0
F= _ ) . ) , (3.5-6)
0 0o - I 0
The Kalman gain is shown in Equation 3.5-7:
75
0
kK=|" (3.5-7)
L0

The Hermitian transpose of the observation matrix is shown in Equation 3.5-8:

HY =[-A¥ (1)-A%(2) - =A% (p)] (3.5-8)

Throughout the MSPSS, AR processes are specified by the parameters of shaping
functions for a block covariance matrix. The block covariance matrix for an order p AR
process is given by Equation 3.5-9:
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[ R(0) R(1) ... R(p)
R(-1) R(0) . ..R(p-1

R=| ' ' ' , (3.5-9)
LR(=p) R(~=p+1) . .. R(0)

where R (1) is given by Equation 3.5-10: _
RUY=E[x(n)x"(n-1)]. _ (3.5-10)

Lagged covariance matrices need only be determined for positive lags. Covariances for
negative lags can be found from Equation 3.5-11, which follows from Equation 3.5-10:

R(~1)=RH(1). (3.5-11)

Two shaping functions are provided for the capability of estimating state space parameters
from a known covariance matrix. The Gaussian shaping function for the cross-channel
correlation function (between channels i and j) is given by Equation 3.5-12:

LR NS »
Ri;(k)=K;, i j T ez"”"‘f‘_‘, i< (3.5-12)
l,"j i
where X; ; is a magnitude which relates to the cross-channel correlation, A, j is the one-lag
temporal cross-channel correlation parameter, / ; is the lag at which the function peaks, ¢ is
the Doppler shift, and T is the sampling period. The shaping function is constructed to ensure
Equation 3.5-13 holds: :

Rij(k)=R;;*(=k), i>j. (3.5-13)
Equation 3.5-14 defines the exponential shaping function:
A, kb
Rij(k) =Ky =g T g (3.5-14)

The AR parameters are determined using the Levinson-Wiggins-Robinson algorithm to
solve the Yule-Walker equations, which are based on the block covariance matrix of the same
order as the AR process. Equation 3.5-15 shows an example of the Yule-Walker system of
equations, for an AR process of order three:

R(0) R(1) R(2) R(3)
R(-1) R(0) R(1) R(2)
R(-2) R(~1) R(0) R(1)
R(-3) R(-2) R(-1) R(0)

[1 A (1) AH(2) A”(3)] =[>: 00 o] (3.5-15)

Notice that when Equations 3.5-12 or 3.5-14 are used to generate the lagged covariance
matrices, such a set of parameters may not correspond to an AR process exactly for any order.
In those cases, the AR model obtained via the Yule-Walker equations is a minimum mean
square model.

.3.5.1 State Space Closed Form Method

A capability to test the state space Canonical Correlations algorithm (Roman 93 and
Vienneau 94) was implemented under this contract. The Canonical Correlations algorithm
estimates the state space parameters F, K, H, and X from the block covariance matrix. The
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Canonical Correlations algorithm estimates the state space model order, and the block
covariance matrix input into the algorithm may be larger than the order of the state space
model.

The Gaussian and Exponential shaping functions are used to determine the elements of
the block covariance matrix up to the order of the AR process. But how should theoretically
exact elements of the covariance matrix be determined for higher orders? Two methods were
implemented for answering this question, the State Space Closed Form and the AR Recursion
Method. Appendix E shows that these two methods are theoretically equivalent when the
correlation functions describe the AR process exactly. This section describes the State Space
Closed Form Method, while the next section describes the AR Recursion Method.

The State Space Closed Form Method begins with the values of the state space
parameters F, K, H, and £ for the correct order. For an AR process, these parameters are as in
Equations 3.5-6, 3.5-7, and 3.5-8, where the AR coefficients and Z are found by solving the
Yule-Walker equations. The outputs of the State Space Closed Form Method are the values
of the lagged covariance matrices R (0), R (1), R(2), ... R(m ), where p <m.

Intermediate matrices P and I' are used in the State Space Closed Form Method. P is
the solution of Equation 3.5-16:

P=FPF¥ +K3zK", (3.5-16)
while T is found from Equation 3.5-17:
Fr=FPH+KZ (3.5-17)

Equation 3.5-16 defines P, but does not give a closed form solution that can be used in an
algorithm. The solution to Equation 3.5-16 can be found as the limit of a matrix series:

P =kli_r’nmP(k), (3.5-18)
where
P(0)=1 (3.5-19)
and
P(k.+l)=FP(k)F”+KZK”. (3.5-20)

The program implementing the State Space Closed Form Method sets P (0) to the identity
matrix, as in Equation 3.5-19. Successive values of P (k) are calculated as in Equation 3.5-20
until the spectral radius of the difference in successive values is below some appropriate small
bound. As is summarized in Appendix D, this condition imposes a lower bound on all
"natural norms" of the difference in successive values of P (k).

The final results of the State Space Closed Form Method, lagged covariance matrices are
calculated as in Equations 3.5-21 and 3.5-22:

R(O)=H*PH +% ' (3.5-21)

R(IY=H"F'-'T, 1=1,2,...m. (3.5-22)

In the cases where the lagged covariance matrices used to obtain the AR parameters do not
correspond to a true AR process of order p, the lags generated via Equations 3.5-21 and 3.5-
22 for ! =0, 1, ..., p will be different from the lags used at the start of the procedure.
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3.5.2 AR Recursion Method

The AR Recursion Method is more straightforward. The first p lagged covariance
matrices, where p is the order of the AR process, are found from the shaping function. These
are the lagged covariance matrices used in the Yule-Walker Equations to determine the AR
coefficients and driving noise covariance matrix. Lagged covariance matrices for higher order
lags are found by the recursion relationship shown in Equation 3.5-23:

M .
R(U==-Y AP (R -k), I=p+1,p+2,.,m. (3.5-23)
k=1

However, with this method there will be a model inconsistency in the cases where the
shaping function lags for / = 0, 1, ..., p do not correspond exactly to a true AR process of
order p. This is likely to be the case more often than not because the lagged products from
the shaping functions are not analytically related to an AR process. In contrast, once the
state-space model parameters F, K, H, Z, P, and T are calculated and covariance lags are
generated using Equations 3.5-21 and 3.5-22, such a set of covariance lags corresponds
exactly to an AR process. '

3.6 Sixteen Channels

The MSPSS imposes a maximum limit to the number of channels in all radar signals to
be synthesized or analyzed. This limit was four channels at the start of this effort. It was
increased to 16 under this effort. The FFT described in Section 3.4 uses a matrix where one
of its dimensions is determined by number of spatial lags. The limit for the number of spatial
lags in the FFT capability is 32.




4. IMPLEMENTATION

Section 3 describes new capabilities implemented under this effort. These capabilities
were implemented as a combination of programs under the menu-based subsystem,
modifications to existing programs, and new analysis sequences under the UFI-based system.
Two new menu-based programs and four analysis sequences provide capabilities for analyzing
a constant magnitude signal with unknown amplitude. Existing synthesis programs were
modified to provide for the synthesis of Weibull SIRPs. The Representative Model was
implemented as a single program under the menu-based subsystem. A new program for the
menu-based subsystem provides the capability of estimating state space parameters from the
AR parameters of a specified correlation function, and some subroutines were modified to
correct a bug in the program for estimating state space parameters for a synthesized process.
A two dimensional FFT of the Representative Model correlation function was implemented as
a single program under the menu-based subsystem. The maximum number of channels was
raised to 16 through a global change to the MSPSS, in both the menu-based and UFI-based
subsystems.

4.1 A Signal with Unknown Amplitude

~ Two new routines were written in the menu-based system to implement the functionality
needed for the analysis of a constant magnitude signal with unknown amplitude in
interference. One of the existing menu-based synthesis routines was modified. Four new
sequences were added to the UFI-based MSPSS subsytem.

The use of the modified menu-based synthesis routine is illustrated in Flgure 4-1. This
figure shows the creation of a file containing five realizations of the sum-of signal and white
noise. User inputs are shown in boldface; all values are chosen for illustrative purposes only.
The real and imaginary parts of the synthesized process are graphed in Figures 4-2 and 4-3.
Both the real and imaginary parts of each channel vary sinusoidally, but the magnitude of
each channel is two. The two new menu-based routines are for

o Estimating the covariance matrix for the interference and the unknown amplitude of the
signal

e Subtracting the estimated signal from the radar returns as described in Figure 3-3.

4.1.1 Covariance Matrix and Amplitude Estimation

The use of the amplitude estimation routine is shown in Figures 4-4 and 4-5. The names
of two files must be input by the user. The first file should have data synthesized under the
null hypothesis so that no signal is present. The second file contains data from which the
signal amplitude is estimated. The radar returns in these files should contain the same number
of time samples, but the number of realizations can vary between the two files. The data
from the first file is used to estimate the covariance matrix. The user can choose to see the
covariance estimate from each realization, or, as in the example, only the average covariance
matrix estimate. The covariance matrix estimate used in amplitude estimation is found by
averaging over all the realizations in the first file. Once all the data in the first file is
processed, the amplitude is estimated for each trial in the second file. Thus, the second file is
treated as if each realization contains the sum of signal and clutter, where the signal is
modeled as described in Section 3.1.2. Note that this program can estimate the phase of a
constant magnitude signal with known magnitude, as well as the unknown amplitude estimate
shown in Figures 4-4 and 4-5.
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MULTI-CHANNEL (M/C) PROCESS SYNTHESIS MENU

MO -- Generate Gaussian noise Choose appropriate svnthesis
Ml -- Method 1 (MC1) process synthesis option from submenu
M2 .- Method 2 (MC2) process synthesis

Enter a command or Q to return to the MAIN menu: m2

Linking program msirp, please stand by ...

77 -O -C -pipe -cg89 sun4/msirp.o -Lsun4 -lmc -lvec -lmat -Imc -L/home/marlin/tom/lib/sund -Ifsl -0
MSIRP -- Multichannel AR Process Generation with SIRPs

Version 1.16
Do you want to set the pseudo random generator seeds (y/n) [N] ?
Number of channels ? 3 Boxed values are defaults

Number of points to be generated and saved ? 200
Enter the number of trials to be generated ? 1

Add a signal component (y/n) [Y] ? y

ENTER PARAMETERS FOR THE SIGNAL. Describe the signal
Do you want a Deterministic, Generalized deterministic or an AR process (d/g/a) [D] ? d
Enter the magnitude of the amplitude ? 2.0

Enter the normalized Doppler (fd T) ? 0.01

Enter the normalized element spacing ? 0.083333333
Enter the angle to the signal in radians ? 1.570796327
Amplitude magnitude: 2.0000e+00

Normalized Doppler f(d) T: 1.0000e-02

Normalized element spacing: 8.3333e-02

Angle to the signal: 1.5708e+00

Initial phase PHI is random.

Initial phase is constant within each trial.

Are these parameters okay (y/n) [Y] ?

Add a clutter component (y/n) [Y]? n

Add a white noise component (y/n) [Y] ? n

Total output file name ? rlv

Title of this dataset ? Constant magnitude signal
Signal output file name ?

No file name entered, is this okay ? y

ok?

Figure 4-1: Synthésizing a Constant Magnitude Signal in White Noise
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Figure 4-2: Real Part of a Constant Magnitude Signal
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Linking program mamp, please stand by ...
77 -O -C -pipe cg89 sund4/mamp.o -Lsund -lmc -lvec -lmat -Imc -L/home/marlin/tom/lib/sun4 -Ifsl -o
MAMP -- Estimates amplitude of multichannel constant signal in clutter.

Version 1.14

Null hypothesis input file name ? rivl Already existing noise file with 2 time samples
Title: Gaussian noise, covariance matrix is identity

Alternate hypothesis input file name ? rivl Sum of signal and noise

Title: Signal + Noise, Amplitude 1.25, Doppler 0.0, Spacing 0.125 Angle 900

Amplitude estimates output file name ? rlva Amplitude file is created

Title of this dataset ? Amplitude estimates Help is available

Estimation: sample Matrix, time/space Average, time Clipping(m/a/c) [M] ? ?

Enter "m" to use sample covariance matrix estimate.

Enter "a" to use the time/space averaged estimator for the correlation

matrix.

Enter "c" to use the time/space averaged estimator with time clipping.

Estimation: sample Matrix, time/space Average, time Clipping(m/a/c) [M] ? a

Use biased estimate (y/n) [N] ? y

Enter the normalized Doppler (fd T) ? 0.0

Enter the normalized element spacing ? 0.125

Enter the angle to the signal in radians ? 1.570796327

Is the magnitude of the amplitude known (y/m) [N] ?

Display covariance estimates for each trial (y/n) [N] ?

Mean value for 10000 trials.
Average covariance matrix: Noise was synthesized

Columns 1 through 2 with Identity covariance

(9.921660e-01,0.000000e+00)  (-8.681035e-03.-3.323868¢-03)
(-8.681035e-03,3.323868e-03)  (1.006634e+00,0.000000e+00)
(3.554484e-03.-1.095882e-03)  (-6.401982¢-03.4.31678%-03)
(-3.996205e-03,-3.282540e-03) (-4.838127¢-03,-9.185376e-04)

Columns 3 through 4
(3.554484¢-03,1.095882¢-03)  (-3.996205¢-03.,3.282540e-03)
(-6.401982¢-03,-4.31678%-03) (-4.838127e-03.9.185376e-04)
(9.921660e-01,0.000000e+00) (-8.681035¢-03.-3.323868e-03)
(-8.681035¢-03,3.323868e-03)  (1.006634e+00,0.000000e+00)

Inverse of average covariance matrix: .

Columns 1 through 2
(1.008024¢+00.0.000000e+00)  (8.688107e-03.3.324494¢-03)
(8.688107e-03,-3.324494e-03)  (9.935789-01.-2.576044¢-09)
(-3.545582¢-03,1.096502e-03)  (6.415665e-03.-4.30125%-03)
(4.019544¢-03,3.300156e-03)  (4.840136¢-03.8.899141e-04)

Figure 4-4:" Estimating the Covariance Matrix and Amplitude
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Columns 3 through 4
(-3.545597e-03.-1.096502e-03)  (4.019544¢-03.-3.300156e-03)
(6.415665e-03.4.301277¢-03) (4.840136e-03.-8.89914 1e-04)
(1.008057e+00.4.493454e-09)  (8.709729¢-03.3.317986e-03)
(8.709729¢-03.-3.317978¢-03)  (9.935464¢-01,-1.200157¢-08)

Trial: 1 Amplitude Estimate: (1.5886e+00,1.2140e+00)
Magnitude: 1.9994e+00

display: Next trial, All trials, or Quit (n/a/q) [N] ? a

Trial: 2 Amplitude Estimate: (-1.0848e+00,-8.5688¢-01)
Magnitude: 1.3824e+00

Trial: 3 Amplitude Estimate: (-5.6062¢-01.-1.3987e+00)
Magnitude: 1.5069¢+00

Trial: 9998 Amplitude Estimate: (-3.3731e-01.1.2878e+00)
Magnitude: 1.3312e+00
Trial: 9999 Amplitude Estimate: (1.0322¢-01,-9.3869e-01)
Magnitude: 9.4435e-01
Trial: 10000 Amplitude Estimate: (1.8662¢e-01,8.7653¢-01)
Magnitude: 8.9618e-01
Mean value for 10000 trials.
Average amplitude estimate: (1.3166e-02,2.2880e-03)
Variance: 1.8137e+00
Average magnitude: 1.3018e+00 Actual magnitude was 1.25
Variance: 1.1894e-01

ok?

Figure 4-5: Estimating the Covariance Matrix and Amplitude (Cont.)

4.1.2 Subtraction Filter Routine

Figure 4-6 shows the subtraction filter routine. The input consists of two files. The first
file contains the radar returns from which the estimated signal is to be subtracted. The second
file contains the estimated amplitudes produced by the amplitude estimating routine. There
should be one amplitude estimate for each realization of the radar returns in the first file.
Optionally, the user can specify a single amplitude to be used for all realizations. The output
is an estimate of the clutter, formed by subtracting the estimated signal from the inputs. The
output is suitable for use in a signal detection algorithm, or for diagnostics. For example,
mean descriptive statistics over the 10,000 trials in the output from the subtraction filter can
be calculated. The sample variance along the two channels is 1.027 and 1.001, respectively.
The sample estimates can be compared with the theoretical value for these innovations, unity
in this case.

4.1.3 Constant Signal Analysis Routines

Four new analysis sequences were written in the UFI-based system for the analysis of
constant magnitude signals with unknown amplitudes. Figure 4-7 shows the UFI menu for
choosing one of these analysis sequences. The first sequence is used to examine the
performance of the covariance matrix and amplitude estimation algorithms. The other three
sequences are used to analyze the signal detection algorithm illustrated in Figure 4-8.
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Linking program msubfil, please stand by ...

£77 -0 -C -pipe -g89 sund4/msubfil.o -Lsund -lmc -lvec -lmat -lmc -L/home/marlin/tom/lib/sun4 -lfsl -o

MSUBFIL -- Filters input by subtracting constant signal
Version 1.5

Input file name ? rlvl

Title: Signal + Noise. Amplitude 1.25, Doppler 0.0, Spacing 0.125 Angle 900
Output file name ? rlvsub

Title of this dataset ? Estimated noise

Enter amplitude or read from File (ef) [F] ?

File containing amplitude estimates ? rlva

Title: Amplitude estimates

Enter the normalized Doppler (fd T) ? 0.0

Enter the normalized element spacing ? 0.125

Enter the angle to the signal in radians ? 1.570796
Filtered 10000 trials. "

ok?

Figure 4-6: Routine for Subtracting the Estimated Signal

—
v

Select a constant magnitude signal sequence with unknown amplitudes

\EK_JJ’.

~ Test covariance matrix and amplitude estimation )

Unknown amplitude signal detection analysis in SIRP noise }

Unknown amplitude signal detection analysis in SIRP clutter

~ Unknoun amplitude signal detection analysis in SIRP clutter and noise

/

Figure 4-7: Unknown Amplitude Analysis Sequences
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Figure 4-8: The Signal Detection Algorithm for a Constant Signal

The analysis sequence for analyzing the amplitude estimation algorithm is fairly
straightforward. The user is asked to enter the number of trials used in synthesizing clutter
and the number of trials used in synthesizing the sum of signal and clutter. Synthesized
clutter is used in estimating the block covariance matrix. The sum of clutter and the signal is
used to estimate the amplitude. The user enters AR process parameters for the clutter and
parameters for the constant magnitude signal. The clutter is an AR process with Gaussian, K-
distributed SIRP, or Weibull SIRP driving noise. The covariance matrix and the amplitudes
are estimated as in the menu-based routines. Estimates of the covariance matrix and the
amplitude are sent to the output file. Figures 4-9, 4-10, and 4-11 show a sample output of this
analysis sequence.




Set random number seeds

Set random number generator seed : n

Get number of channels.

Number of channels : 2

Get some common parameters for signal, clutter and noise.

Length of the generated process in points : 3

Enter the number of points to be generated before saving data : 500

Get AR process parameters with SIRP driver

Order of the AR process : 3

Gaussian, K-distributed SIRP, or Weibull SIRP driving noise (g/k/w) k

Do you want S to vary within each realization/trial (y/n) :

Do you want the diagonal elements of S to all be equal (y/n)

Specify Cholesky or L-D-U decomposition (c/l) : ¢

Driving noise: real only, imaginary only, or complex (r/ifc) : ¢

Noise Alpha, the shape parameter for Gamma distribution of S : 0.5

Noise B, a parameter for the distribution of V : 1.0

Use Gaussian or Exponential shaped function (g/e) : g

Enter the amplitude matrix for the AR process : 1.0,0.0

0.0,1.0

Enter the intertemporal correlation matrix for the AR process : 0.1,0.0

0.0,0.1

Enter the matrix of lag values for the AR process : 0,0

0,0

Reference doppler frequency for the AR process : 0.0

Enter the sample interval for the AR process : 0.01

Intertemporal correlation coefficients:

R(0)=(1.0000e+00,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (1.0000e+00,0.0000e+00)

R(1)=(1.0000e-01,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (1.0000e-01,0.0000e+00)

R(2)=(1.0000e-04,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (1.0000e-04,0.0000e+00)

R(3)=(1.0000e-09,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (1.0000e-09,0.0000e+00)

Determinants of principle minors:
(1.0000e-+00,0.0000e-+00)(1.0000e+00,0.0000e+00)(9.9000e-01,0.0000e+00)(9.8010e-01,0. 0000e+00)...
Coefficients for the AR process:
a(1)= (-1.0101e-01,0.0000e+00) (0.0000¢+00,0.0000e+00)

(0.0000e+00,0.0000e+00) (-1.0101e-01,0.0000e+00)

a(2)= (1.0101e-02,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (1.0101e-02,0.0000e+00)

a(3)= (-1.0000e-03,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (-1.0000e-03,0.0000e+00)

Figure 4-9: Amplitude Estimation Results
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Covariances: (9.8990e-01,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (9.8990e-01,0.0000e+00)
Correlations: (9.9494¢-01,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00,0.0000e+00) (9.9494¢-01,0.0000e+00)

CONSTOP - Reads constant magnitude signal parameters from user

Amplitude of constant magnitude signal : 1.25

Normalized Doppler of constant magnitude signal : 0.0

Normailized element spacing : 0.125

Angle to the signal in radians : 1.5708

MCOVP - Asks the user to enter covariance matrix estimation options

Estimation: sample Matrix, time/space Average, time Clipping(m/a/c) : a

Use biased estimate (y/n) : y

Output each covariance matrix estimate (y/n) : n

ACOVOP - Asks user for info about average covariance matrix estimate

Output the average covariance matrix estimate (y/n) : y

MAMPOP - Ask user whether amplitude estimates should be output

Output each amplitude estimate (y/n) : n

Is the amplitude magnitude known (y/n) : n

Mean value for 10000 triais.
Average covariance matrix:

Columns 1 through 2
(9.739912¢-01,0.000000e+00)  (2.712762¢-03,5.375063¢-03)
(2.712762¢-03,-5.375063e-03)  (9.901970e-01,0.000000e+00)
(6.350853¢-02,5.049611e-03)  (-2.736679¢-03,-7.572205¢-03)
(-8.788312¢-04,2.111209¢-03)  (6.849832¢-02,9.498819¢-04)
(-2.587584¢-03,-7.809592e-06) (-8.939112e-04,-1.153310e-03)
(-8.176130e-04,2.022152¢-04)  (-3.452280e-04,1.530773¢-03)

Columns 3 through 4
(6.350853e-02,-5.049611e-03)  (-8.788312¢-04,-2.111209¢-03)

(-2.736679¢-03,7.572205e-03)
(9.739912e-01,0.000000e+00)
(2.712762¢-03,-5.375063e-03)
(6.350853e-02,5.04961 1e-03)

(-8.788312¢-04,2.111209¢-03)

Columns 5 through 6
(-2.587584e-03,7.809592¢-06)
(-8.939112¢-04,1.153310e-03)
(6.350853¢-02,-5.0496 1 1e-03)
(-2.736679e-03,7.572205e-03)
(9.739912¢-01,0.000000e+00)
(2.712762e-03,-5.375063e-03)

(6.849832¢-02,-9.498819¢-04)
(2.712762¢-03,5.375063e-03)
(9.901970e-01,0.000000e+00)
(-2.736679¢-03,-7.572205¢-03)
(6.849832¢-02,9.498819¢-04)

(-8.176130e-04,-2.022152¢-04)
(-3.452280e-04,-1.530773¢-03)
(-8.788312e-04,-2.111209¢-03)
(6.849832¢-02,-9.498819¢-04)
(2.712762¢-03,5.375063¢-03)
(9.901970e-01,0.000000e+00)

Figure 4-10: Amplitude Estimation Results (Cont’d)




Variances:

Columns | through 4
1.543065e+00 9.388222¢-01

9.388222¢-01
2.419760e-01
2.206363e-01
1.050504e-01
1.063162e-01

1.547744e+00
2.341915e-01
2.381257e-01
1.100442¢-01
1.076555e-01

Columns 5 through 6

1.050504e-01
1.100442¢-01
2.419760e-01
2.341915e-01

1.063162¢-01
1.076555¢-01
2.206363e-01
2.381257e-01

- 1.543065¢+00 9.388222¢-01

9.388222¢-01

1.547744e+00

2.419760e-01
2.341915e-01
1.543065e+00
9.388222e-01
2.419760e-01
2.206363e-01

Inverse of average covariance matrix:
Columns 1 through 2

2.206363e-01
2.381257e-01
9.388222¢-01
1.547744e+00
2.341915e-01
2.381257e-01

(1.031222e+00,0.000000e+00)  (-3.135458¢-03,-6.307036e-03)
(-3.135458e-03,6.307013e-03)  (1.014910e+00,1.124075¢-08)
(-6.778821e-02,-5.359376e-03)  (3.187418e-03,8.721530e-03)
(1.331642¢-03,-3.049985¢-03)  (-7.064067¢-02,-8.784747e-04)
(7.148132¢-03,7.088222e-04)  (5.463213¢-04,2.312660e-05)
(6.700754¢-04,1.828000e-04)  (5.255580e-03,-1.441172¢-03)

Columns 3 through 4 :
(-6.778820e-02,5.359375e-03) (l 331642¢-03,3.049985¢-03)
(3.187418e-03,-8.721530e-03)  (-7.064067¢-02,8.784608e-04)
(1.035732¢+00,1.429922¢-09)  (-3.431246e-03,-7.086769¢-03)
(-3.431261e-03,7.086784€-03)  (1.019806¢+00,-8.951288e-09)
(-6.778634e-02,-5.365778¢-03)  (3.181972¢-03,8.725807¢-03)
(1.310989e-03,-3.038183e-03)  (-7.064237¢-02,-8.721282¢-04)

Columns 5 through 6
(7.148176e-03,-7.088184e-04) (6. 700791e 04.-1.828074e-04)
(5.463175e-04,-2.309680e-05)  (5.255580e-03,1.441169¢-03)
(-6.778634e-02,5.365772e-03)  (1.310974¢-03,3.038183e-03)
(3.181983e-03,-8.725822¢-03)  (-7.064235¢-02,8.721200e-04)
(1.031291e+00,-9.782253e-10)  (-3.096633¢-03,-6.345093e-03)
(-3.096640e-03,6.345086e-03)  (1.014843e+00,-8.683358e-10)

Mean value for 10000 trials.
Average amplitude: (-2.0039¢-02,8.3590e-03)
Average magnitude: 1.2911e+00  Variance: 9.1017e-02

Variance: 1.7575e+00

Actual magnitude 1.25

Figure 4-11:
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The remaining sequences estimate the threshold and the probability of detection for
user-specified false alarm probabilities. Variances in these estimates are calculated. In all three
cases discussed here, the signal is a constant magnitude signal, as described in Section 3.1.2.
The three sequences vary among the null hypotheses in which no signal is present. In one
case, the clutter is modeled as K-distributed SIRP white noise uncorrelated in time. In this
case, the filter F, merely decorrelates the input across channels, as in Figure 3-1. In the
second case, the clutter is modeled as an AR process with K-distributed SIRP driving noise.
In the third case, the clutter is modeled as the sum of an AR process and white noise. In both
of these cases, the filter F, decorrelates the input across time and across channels, as in Figure
3-2.

These sequences begin with an a priori estimation phase. Many realizations of the clutter
y (n) are used to estimate the covariance matrix £ and the filter parameters. When the clutter
is modeled as white noise, the filter has only one parameter, related to the JxJ zero-lag
covariance matrix. Otherwise, AR coefficients and the driving noise covariance matrix are
estimated.

The next step is to synthesize many realizations of the radar returns x (» ) under the null
hypothesis of no signal. These realizations are used to determine the loglikelihood statistic A
for given false alarm probabilities. The statistic is calculated for each realization, as shown in
Figure 4-8. The null hypothesis innovations vy(n) are estimated by the appropriate linear
filter, Figure 3-1 or Figure 3-2. The signal amplitude is estimated for each realization based
on the ’a priori’ estimate of the covariance matrix and the known steering vector. The user
has the option of specifying the amplitude magnitude as known, in which case only the phase
is estimated. The amplitude estimate is used to subtract the estimated signal from the radar
returns, and the result is then filtered by F, to produce the alternative hypothesis innovations
vi(n). These innovations are used to calculate the appropriate loglikelihood statistic for a K-
distributed SIRP. An estimate of the probability distribution for A under the null hypothesis is
found from the many realizations of the loglikelihood distribution. This allows the program
to calculate the statistic value (threshold) for the tail probability given by the false alarm
probability.

Another set of realizations of the radar returns are used to estimate the probability of
detection. This set of realizations contains the constant magnitude signal, as well as clutter.
The signal is resynthesized for each realization, allowing the signal phase to vary randomly
across realizations. The same signal detection algorithm (Figure 4-8) is used to calculate the
loglikelihood statistic for each realization. If it is above the threshold determined before by an
user-specified false alarm probability, the algorithm decides that a signal is present. The
detection probability is estimated as the ratio of the number of realizations in which a signal
is decided to be present to the total number of realizations.

The user can specify that this process of a priori estimation, threshold determination, and
probability of detection estimation be repeated a number of times. The different results of
these repetitions are used to estimate the variance in the estimates of the threshold and the
probability of detection.

4.2 Weibull Clutter

A number of subroutines were modified, both in the menu-based subsystem and in
sequences in the UFI-based subsystem, to implement the synthesis of Weibull-distributed
Spherically Invariance Random Processes (SIRPs). Figure 4-12 shows an invocation of this




MULTI-CHANNEL (M/C) PROCESS SYNTHESIS MENU
M2 -- Method 2 (MC2) process synthesis

Enter a command or Q to return to the MAIN menu: m2
Linking program msirp, please stand by ...

‘bin/sund4/msirp’ is up to date.

MSIRP -- Multichannel AR Process Generation with SIRPs
Version 1.14

Do you want to set the pseudo random generator seeds (y/n) {N] ? y
Enter an integer seed value ? 4

Enter an integer seed value ? 6

Enter an integer seed value ? 8§

Enter an integer seed value ? 1

Number of channels ? 1

Number of points to be generated and saved ? 100

Enter the number of trials to be generated ? 10

Add a signal component (y/n) [Y] ? n

Add a clutter component (y/n) [Y] 7 n

Add a white noise component (y/n) [Y] ?y

ENTER PARAMETERS FOR THE NOISE.

Gaussian, K SIRP, or Weibull SIRP noise (g/k/w) {G] ? w

Do you want R to vary within each realization/trial (y/n) [Y] ? y
Do you want R to be constant across channels (y/n) [Y] ? y
Specify Cholesky, L-D-U, or SVD (c/l/s) [C] 7 ¢

Do you want the noise to be real, imaginary, or complex (r/i/c) [C] ? ¢
Enter Noise B, a parameter for the Weibull distribution ? 1.0
Do you want the Cholesky decomposition matrix C to be identity (y/n) [Y] 7y
Complex Weibull-distributed SIRP noise will be generated.
SIRP random variable R varies across time samples.

R will be constant across channels.

B for the SIRP: 1.0000e+00

Correlations: (1.0000e+00,0.0000e+00)

Are these parameters okay (y/n) [Y] ?y

Total output file name ? riv

Title of this dataset ? White noise, magnitude is Weibull
Noise output file name ?

No file name entered, is this okay ? y

Note: the following IEEE floating-point arithmetic exceptions
occurred and were never cleared; see ieece_flags(3M):

Inexact; Underflow; Overflow; Invalid Operand;

Sun’s implementation of IEEE arithmetic is discussed in

the Numerical Computation Guide.

ok? Warning message is common

Figure 4-12: Synthesizing Weibull Noise
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capability. In this case, temporally uncorrelated white noise is generated. Each time sample is
a complex one-channel SIRP with another realization of the spherical distance from the origin
R. From Equations 3.2-23 and 3.2-11 through 3.2-14, one can show the distribution of the
magnitude of the process is the Weibull distribution given by Equation 4.2-1:

fa(ry=abrt=te e r>0, (4.2-1)

Since the user specifies b to be equal to unity in the example, both the scale and shape
parameters of this Weibull distribution are unity. (See Appendix B.)

The synthesized process can be analyzed by any capabilities provided in the MSPSS. For
example, Figure 4-13 shows the results of applying Ozturk’s algorithm (Ozturk 90) to the
magnitude of the first realization of the processes synthesized in Figure 4-12. The hypothesis
that the magnitude is Weibull-distributed, with a shape parameter of unity, should be rejected
if the endpoint of the curve corresponding to the sample falls outside the double circles. In
this case, Ozturk’s statistic leads to the acceptance of a Weibull distribution. So this case
illustrates a test showing the Weibull-synthesis capability functions correctly.

Ozturk"s Statistic

0 ! | ! | 1 | |
o
| 90% Confidence Interval i
+
¢ — 99% Confidence Interval —
o / ?
n r——
o
> 7] ' Transformed Sample B
N -
° Weibull Distribution Expected Value
- Transformed Sample -
o
o
0' 1 i l ] I I
-0.2 ~-0.1 0.0 0.1 0.2
U

Figure 4-13: Ozturk Test for Weibull Distribution
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Some difficulties arose in implementing the Weibull distribution. Appropriate parameters
for the triangular distributions described in Appendix C were found numerically. The
synthesis process can be quite slow for Weibull SIRPs with a large number of time samples.
Procedures to remove these limitations should be investigated. '

4.3 Representative Model

The Representative Model was implemented as one routine in the menu-based subsystem.
Figures 4-14 through 4-17 illustrate the use of this routine. The user enters parameters
describing the signal, the clutter, and interference. Two models are provided for both the
signal and the interference. The synthesized process need not contain signal, clutter, and
interference. Any of the three can be absent. The user is able to save each to a separate file,
as well as any AR parameters that have been calculated for the respective models. Only the
sum of signal, clutter, and interference is saved in the illustrated example. Figure 4-18 shows
a graph of the real part of the synthesized process. In this case, the synthesized process
consists of two periods of three channels of a phase-shifted sine wave (for the signal), with
the addition of clutter and interference.

STAP -- Synthesizes multichannel representative model processes -
Version 1.13

Do you want to set the pseudo random generator seeds (y/n) [N] ?
Number of channels ? 3 Describe radar.

Number of points to be generated and saved ? 100

Enter the number of trials to be generated ? 100

Enter the normalized element spacing ? 0.25

Enter the normalized platform Doppler center frequency ? 0.014142136

Channels/elements: 3
Time samples: 100
Realizations/trials: 100

Radar parameters:
Normalized element spacing: 2.50000e-01
Normalized element spacing: 1.41421e-02
Are these parameters okay (y/n) [Y] ?
Add a signal component (y/n) {Y] ? Describe signal.
ENTER PARAMETERS FOR THE SIGNAL.
Do you want a Constant amplitude or Random signal (c/r) [C] ? ¢
Enter the normalized signal Doppler center frequency ? 0.014142136
Enter the angular direction to signal ? 0.785398163
Enter the magnitude of the signal ? 1.5
Do you want to specify the initial phase (y/n) [Y] ?
Enter the initial phase ? 0.0
Constant amplitude signal parameters:
Normalized signal Doppler center frequency: 1.41421e-02
Angular direction to the signal: 7.85398¢-01
Magnitude: 1.50000e+00
Initial phase: 0.00000e+00
Are these parameters okay (y/n) [Y] ?

Figure 4-14: Representative Model Synthesis
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Add a clutter component (y/n) [Y] ? "~ Describe clutter.
ENTER PARAMETERS FOR THE CLUTTER.
Enter the angular beam direction ? 0.0
Do you want the clutter to be real, imaginary, or complex (r/i/c) [C] ?
Gaussian, K-distributed SIRP, or Weibull SIRP driving noise (g/k/w) [G] ?
Constant clutter standard deviation across channels (y/n) {Y] ?
Enter the channel standard deviation ? 0.5
Do you want to use the Block procedure or an AR process (b/a) [A] ? a
Enter the number of points to be generated before saving data ? 1000
Enter the order of the AR process ? 4
Specify Cholesky, L-D-U, or SVD decomposition (c/I/s) [C] 7 ¢
Gaussian, exponential Correlation, or exponential Power temporal shaping [G] ? g
Enter the one lag temporal correlation parameter ? 0.90
Gaussian or Hanning/hamming/blackman-harris spatial shaping function (g/h) [(G] ? g
Enter the one lag spatial correlation parameter ? 0.9
Clutter parameters:

Angular beam direction: 0.00000e+00

Driving noise is complex.

Cholesky decomposition is used in synthesizing driving noise.

Clutter has Gaussian driving noise.

Channel standard deviations:

5.00000e-01 5.00000e-01 5.00000e-01

Clutter will be synthesized as an AR process.

Points to prime the clutter process: 1000

Order of the AR process: 4

A Gaussian temporal shaping function will be used.

One lag temporal correlation parameter: 9.00000e-01

A Gaussian spatial shaping function will be used.

One lag spatial correlation parameter: 9.00000e-01
Are these parameters okay (y/n) [Y] ? y

Block covariance matrix for lag 0
2.500000e-01 2.250000e-01 1.640250e-01
2.250000e-01 2.500000e-01 2.250000e-01
1.640250e-01  2.250000e-01 2.500000e-01
The program calculates the
block covariance matrix.

Block covariance matrix for lag 4
4.632548e-02 4.169293¢-02 3.039415e-02
4.169293e-02 4.632548e-02 4.169293e-02
3.039415e-02 4.169293e-02 4.632548e-02

Figure 4-15: Representative Model Synthesis (Continued)
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The program calculates the

Coefficients for the AR process:
AR coefficients.

A(l):
-2.698014e+00 -1.227813e-03 1.968449¢-05
-2.500378e-03  -2.694599e+00 -2.502176e-03
4.966523e-04 -2.732538e-03 -2.697129e+00

A(2):
3.308810e+00 2.801777e-03 5.090439¢-05

6.143676e-03  3.300308e+00 6.123936¢-03
-1.290442e-03  6.827475e-03 3.306435e+00

AQ3): ,
-2.186008e+00 -2.527904e-03 -1.548294e-04

-6.042001e-03  -2.177529e+00 -5.99827%-03
1.349216e-03 -6.845814e-03 -2.183456e+00

A4):
6.564693¢-01 9.012222¢-04 1.044273e-04

2.379417e-03  6.530809e-01 2.352715e-03
-5.674362e-04 2.756119e-03 6.553717e-01

Driving noise covariance matrix:
4.342771e-03  3.905334e-03 2.844440e-03
3.907508e-03 4.342770e-03 3.907157e-03
2.840573e-03  3.901698e-03  4.340220e-03

Decomposed driving noise covariance matrix:
6.589971e-02  0.000000e+00 0.000000e+00
5.929477e-02 2.875588e-02 0.000000e+00
4.310448e-02 4.680183e-02 1.708250e-02

Figure 4-16: Representative Model Synthesis (Continued)
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Add interference (y/n) {Y] ?y Describe interference.
ENTER PARAMETERS FOR THE INTERFERENCE.
Direct path White noise or partiaily Correlated noise (w/c) [W] ? w
Enter the normalized interference Doppler center frequency ? -0.014142136
Enter the angular direction to jammer ? 0.523598776
Do you want the interference to be real, imaginary, or complex (r/i/c) [C] ? ¢
Gaussian, K-distributed SIRP, or Weibull SIRP driving noise (gkw)[Gl?g
Enter the shaping function standard deviation ? 0.707106781
Direct path white noise interference parameters:

Normalized interference Doppler center frequency: -1.41421e-02

Angular direction to the jammer: 5.23599¢-01

Driving noise is complex.

Cholesky decomposition is used in synthesizing driving noise.

Interference has Gaussian driving noise.

Standard deviation:

7.07107e-01

Are these parameters okay (y/n) [Y] ? y
Total output file name ? rlv Save synthesized results.
Title of this dataset ? Rep. Model signal + clutter + interference
Signal output file name ?
No file name entered, is this okay ? y
Clutter output file name ?
No file name entered, is this okay ? y
Clutter output coefficient file name ?
No file name entered, is this okay ? y
Interference output file name ?
No file name entered, is this okay 7 y
ok?

Figure 4-17: Representative Model Synthesis (Continued)
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4.4 Two-Dimensional FFT

A two-dimensional FFT of the covariance matrix for the Representative Model clutter
was implemented as one routine in the menu-based subsystem. The 2-D FFT algorithm was
based on that implemented under Khoros. A 2-D FFT is implemented in Khoros as a
combination of C and Fortran source code. The C source code was translated to Fortran
under this effort. Figures 4-19 through 4-23 show an invocation of the two-dimensional FFT
capability. The user enters parameters describing parameters of the correlation function for the
Representative Model clutter. The 2-D FFT must be run under X Windows. A new window
appears at various points in the program for displaying graphs. These displays use the Khoros
program Xprism. Xprism allows the user to manipulate, rotate, and annotate the results.

Performs 2-D FFT on Representative Model Covariance Matrix.

Version .14

Number of channels ? 12

Number of time samples ? 12

Enter the normalized element spacing ? 0.5

Enter the normalized platform Doppler center frequency ? 0.5

Enter the angular beam direction ? 0.0

Enter the channel standard deviation ? 2.0

Gaussian, exponential Correlation, or exponential Power temporal shaping [G] ?
Enter the one lag temporal correlation parameter ? 0.9975

Gaussian or Hanning/hamming/blackman-harris spatial shaping function (g/h) [G} ?
Enter the one lag spatial correlation parameter ? 0.54

Do you want to do Dolph-Chebychev filtering (y/n) [Y] ? y

Sidelobe level (in decibels relative to peak) ? 40.0

Channels/elements: 12

Time samples: 12

Normalized element spacing: 5.0000000e-01
Normaiized platform Doppler: 5.0000000e-01
Angular beam direction: 0.0000000e+00

Channel standard deviations: 2.0000000e+00

A Gaussian temporal shaping function will be used.
One lag temporal correlation parameter: 9.9750000e-01
A Gaussian spatial shaping function will be used.
One lag spatial correlation parameter: 5.4000002¢-01
Dolph-Chebychev filtering will be performed.
Sidelobe level: 4.0000000e+01

Are these parameters okay (y/n) [Y] ?

Plotting covariance matrix... Displays graph in Figure 4-20
Complex data conversion: Real, Imaginary, Magnitude, or Angle [R] ?

Plotting covariance matrix... Displays graph in Figure 4-21
Complex data conversion: Real, Imaginary, Magnitude, or Angle [R] 7 r

Plotting FFT of covariance matrix... Displays graph in Figure 4-22
Complex data conversion: Real, Imaginary, Magnitude, or Angle [R] ? m

Plotting FFT of covariance matrix... Displays graph in Figure 4-23
Complex data conversion: Real, Imaginary, Magnitude, or Angle [R] ?

ok?

Figure 4-19: An FFT Example
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Figure 4-20: Graph of Correlation Function
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Figure 4-21: Dolph-Chebychev Filtering of Correlation Function
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Figure 4-23: Logarithm of Magnitude of FFT




4.5 State Space Capabilities

Figures 4-24, 4-25, and 4-26 illustrate the use of the new state space routine added under
this effort. The user enters parameters for a "shaping function" defining the block covariance
matrices for lags equal to the user-selected order of an AR process. The Levinson-Wiggins-
Robinson algorithm is used to solve the Yule-Walker equations to find the AR parameters.
Block covariance matrices for a larger number of lags are found through either the State
Space Closed Form Method (Section 3.5.1) or the AR Recursion Method (Section 3.5.2). This
block covariance matrix is used to find state space parameters by the canonical correlations
algorithm. (Previously, the block covariance matrix needed to be estimated from a synthesized
process, thus introducing statistical variation.) As the example illustrates, the resulting state
space estimates can exhibit a basis transformation.

SSC2 -- Estimates state space model parameters by Scientific Studies algorithm
Version 1.8
Number of channels 7 2
Order of the AR process ? 2
Use Gaussian or Exponential shaped function (g/e) [G] ?
Enter row 1 of the amplitude matrix:
Enter a row ? 1.995, 0.0
Enter row 2 of the amplitude matrix:
Enter a row ? 0.0, 1.995
Enter row 1 of the intertemporal correlation matrix:
Enter a row ? 0.9, 0.0
Enter row 2 of the intertemporal correlation matrix:
Enter a row ? 0.0, 0.9
Enter row | of the lag matrix:
Enter a row ? 0,0
Enter row 2 of the lag matrix:
Enter a row ? 0,0
Reference doppler frequency ? 0.0
Enter the sample interval ? 0.01
An AR( 2 ) process will be analyzed.
Gaussian shaped function.
Amplitude matrix:
1.995000e+00 0.000000e+00
0.000000e+00  1.995000e+00

1-lag Temporal Correlation Matrix:
9.000000e-01  0.000000e+00
0.000000e+00  9.000000e-01

Lag matrix:
00
00

Reference doppler frequency: 0.0000e+00 Hz.
Sample intervai: 1.0000e-02 seconds.
Are these parameters okay (y/n) [Y]?
Intertemporal correlation coefficients:

Figure 4-24: A State Space Example
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R(0O):
1.995000e+00 0.000000e+00
0.000000e+00  1.995000e+00

R(1):
1.795500e+00  0.000000e+00
0.000000e+00  1.795500e+00

R(2):
1.308919e+00  0.000000e+00
0.000000e+00 1.308919e+00

Coefficients for the AR process:
A(l):

-1.629000e+00 0.000000e+00
0.000000e+00 -1.629000e+00

A(2)
8.099999¢-01  0.000000e+00
0.000000e+00  8.099999¢-01

Driving noise covariance matrix:
1.303554e-01  0.000000e+00
0.000000e+00 1.303554e-01

Output file name for parameter estimates ?
No file name entered, is this okay ? y

The program calculates AR parameters

Upper bound, L, on size of state space block vector ? 3
State space closed Form or AR recursion method (f/a) ? a

Covariance matrix for lag 0
1.995000e+00  0.000000e+00
0.000000e+00 1.995000e+00

Covariance matrix for lag 1
1.795500e+00 0.000000e+00
0.000000e+00 1.795500e+00

Covariance matrix for lag 2
1.308919¢+00 0.000000e+00
0.000000e+00 1.308919e+00

Covariance matrix for lag 3
6.778746e-01  0.000000e+00
0.000000e+00 6.778746e-01

Covariance matrix for lag 4
4.403305e-02  0.000000e+00
0.000000e+00 4.403305e-02

Figure 4-25: A State Space Example (Cont’d)
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Covariance matrix for lag 5
-4.773485e-01  0.000000e+00
0.000000e+00 -4.773485e-01

Covariance matrix for lag 6
-8.132674e-01  0.000000e+00
0.000000e+00 -8.132674e-01

MODEL ORDER MENU

0 - Enter the model order directly

1 - Use the canonical correlations to calculate the model order

2 - Use the normalized running sum of the canonical correlations
3 - Use the squares of the canonical correlations

4 - Use the normalized running sum of squares

5 - Use the log parameters

6 - Use the normalized mutual information parameters

Model order calculation method ? 1 The program can find the model order
Upper bound on canonical correlations ? 0.05
Display diagnostic information (y/n) ? n Intermediate calculations could have been displayed

Canonical correlations:

9.794061e-01 9.794056e-01 6.698955e-01 6.698954e-01 1.653733e-07 1.066407e-07
Order: 4

System Dynamics matrix F:

8.740377e-01 3.144643e-15 3.874717e-01 -3.395807e-09

9.068543e-16 8.740378e-01 -3.395813e-09 -3.874718e-01

-3.874723e-01 3.395806e-09 7.549624e-01 9.210561e-15

3.395801e-09 3.874724e-01 -1.060677e-14 7.549620e-01

Hermetian transpose of Observation matrix H:
1.363761e+00 -9.999875e-09 2.536587e-01 2.253127e-09
9.999872e-09 1.363760e+00 2.253115e-09 -2.536590e-01

Kalman Gain:
1.001023e+00 2.130526e-09
-2.130539¢-09 1.001017e+00
1.040161e+00 -3.170894e-08
-3.170937e-08  -1.040140e+00

Covariance matrix for innovations: Matches theoretical value
1.303552e-01 -3.080869e-15
-3.080869¢-15 1.303568e-01

ok?

Figure 4-26: A State Space Example (Cont’d)
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A.1 Notation
A

Af (k)
AZ(k)

[(n)
I'(n)

Appendix A.
NOTATION AND ACRONYMS

(1) The amplitude in the constant magnitude signal model. (2) A constant
used in defining the Probability Density Function for the quadratic form gq.
(3) A matrix.

An estimate of the amplitude in the constant magnitude signal model.
An AR coefficient.
An AR coefficient for the Representative Model clutter.

A constant used in defining the Probability Density Function for the quadratic
form q.

Some sets.

The Cholesky decomposition of the covariance matrix R,.

The vector space consisting of n-dimensional complex vectors.

The Cholesky decomposition of the covariance matrix R..

A constant used in the rejection method.

The Cholesky deéomposition of the covariance matrix R,.

The Cholesky decomposition of the covariance matrix £, .

The Cholesky decomposition of the covariance matrix £..

The diagonal matrix in the LDU decomposition of the covariance matrix %, .

The diagonal matrix in the LDU decomposition of the covariance matrix ..

System dynamics matrix in state space model.
The null hypothesis filter.

The alternative hypothesis filter.

The observations matrix in the state space model.
The null hypothesis.

The alternative hypothesis.

An interference process.

A single-channel process which is transformed to form the interference
process.

The number of channels (elements) in a radar return.

(1) The number of realizations of a process. (2) Kalman gain matrix in state
space model. (3) Amplitude matrix in a shaping function.

The lower triangular matrix in the LDU decomposition of the covariance
matrix I, .

The lower triangular matrix in the LDU decomposition of the covariance
matrix Z,.




RC ’ RL‘C

Ry (k)

a; (k)

b/

c(n)

>l B

(1) A block covariance matrix related to the quadratic form g. (2) The
number of channels in a radar return.

The number of time samples in a radar return.
A matrix used in the State Space Closed Form Method.
A sequence of matrices used in the State Space Closed Form Method.

The matrix of eigenvectors in the SVD of £, an estimated block covariance
matrix.

The matrix of eigenvectors in the SVD of }:w
The matrix of eigenvectors in the SVD of Z,..

(1) A coordinate in a generalized spherical transformation of a SIRP. (2) A
block covariance matrix

The norm of a Gaussian process.

The covariance matrix for interference in the Representative Model.
The block covariance matrix for the clutter in the Representative Model.
The covariance matrix for the signal in the Representative Model.

The kth lagged correlation matrix for the AR process y (n).

(1) Either the Cholesky, LDU, or Singular Value Decomposition of £,. (2) A
linear operator. (3) The sampling period in a shaping function.

Either the Cholesky, LDU, or Singular Value Decomposition of £..
Either the Cholesky, LDU, or Singular Value Decomposition of Z..
Either the Cholesky, LDU, or Singular Value Decomposition of £,,.

A random variable used in the rejection method.

(1) A random variable from a Weibull distribution. (2) A vector space.
A random variable from a Weibull distribution.

(1) A parameter of a Weibull distribution. (2) An amplitude of a signal.
A constant used in the rejection method.

An AR coefficient for the signal in the Representative Model.

A parameter of a Weibull distribution.

A constant used in the rejection method.

(1) A clutter process. (2) A parameter in a linear transformation of a
Weibull-distributed random variable. (3) A constant used in the rejection
method.

A clutter process.
A constant used in the rejection method.

A constant used in the rejection method.

Normalized element spacing in a phased array radar.
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Fu(l)
()

e (1)

Frs (1)

Frse (1)

s
s(n)
s (n)

5o, So(’l )

50, (n)
Sm(n)

Uy, us

The normalized Doppler of a constant magnitude signal.
Normalized interference/jammef Doppler center frequency.
Normalized platform Doppler center frequency.
Normalized signal Doppler center frequency.

A channel index.

A channel index.

(1) A index for lags in an AR process. (2) A constant used in the rejection
method.

A matrix of Iag values at which a shaping function for a block covariance

‘matrix peaks.

A transformation of a spatial and temporal lag index.
A transformation of a spatial and temporal lag index.
A normed vector space. .

A spatial lag index.

A temporal lag index.

A channel index.

(1) A time index; (2) A noise process.

The order of an AR process.

A quadratic form used in the definition of SIRPs.

A realization of the random variable R resulting from a generalized spherical
coordinate transformation of a SIRP.

An estimate of the Ith lag of a covariance matrix.

Time averaged estimate of the /th lag of a covariance matrix from the kth
realization of the clutter process.

Time averaged estimate of the /th lag of a covariance matrix with time
clipping, from the kth realization of the clutter process.

Time/space averaged estimate of the /th lag of a covariance matrix.

Time/space averaged estimate of the /th lag of a covariance matrix with time
clipping.

(1) A signal process. (2) A constant used in the rejection method.

A signal process. v

A process used in synthesizing the representative model signal.

The normalized constant magnitude signal. s, is a block vector formed by
concatenating the time samples sq(n ).

A channel in the normalized constant magnitude signal.
A channel in a signal process.

Realizations of random variables used in the rejection method.




wi(n)

x(n)

y(n)

yE, yE(n)

z(n)

M o> P

e M P M

w7
b3

Q

Weibull-distributed white noise.

(1) Radar returns. x is a block vector formed by concatenating the time
samples x(n). (2) A realization of the Weibull-distributed random variable
X. (3) A vector in a vector spce.

Radar returns.

(1) A clutter process. y is a block vector formed by concatenating the time
samples vy (n). (2) A vector in a vector spce.

A clutter process, either white noise or a stochastic process correlated across
time (e.g. an AR process).

The kth realization of a clutter process. y* is a block vector formed by
concatenating the time samples y* (n).

A vector in a vector space.

A unit-variance zero-mean Gaussian process.

A coordinate in a generalized spherical transformation of a SIRP.
A matrix in the State Space Closed Form Method.

(1) The loglikelihood statistic. (2) The diagonal matrix of eigenvalues in the
SVD of £, an estimated block covariance matrix.

The diagonal matrix of eigenvalues in the SVD of Z,.
The diagonal matrix of eigenvalues in the SVD of L.

The covariance matrix for the innovations in the innovations representation of
the state space model.

Estimated block covariance matrix.

The driving noise covariance matrix for the Representative Model clutter
The covariance matrix for weibull noise w (n).

The covariance matrix for the driving noise £(n) in an AR process.

A coordinate in a generalized spherical transformation of a SIRP.

(1) A significance level, that is, the probability of erroneously accepting an
alternative hypothesis. In radar, the probability of false alarm. (2) An angle.
(3) A scalar.

(1) A tail probability. (2) An unknown complex amplitude to modify a
steering vector. (3) An angle in the Representative Model of the clutter.

State variables in state space model.

(1) The probability of erroneous accepting a null hypothesis. In radar, 1
minus the probability of detection. (2) A parameter of a spatial shaping
function. :

(1) A driving noise term in an AR process. ¢ is a block vector formed by
concatenating the time samples (n). (2) The innovations in the innovations
representation of the state space model.
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Ky

M,

M
v(n)
ve(n)
vo(n)

vi(n)

I
I,
ol
F{(,)
Fi()
M(C)
fQO)
fr()

A parameter of the exponential power spectrum temporal shaping function.
The initial phase.
Angle to the signal.

(1) An eigenvalue. (2) A matrix of intertemporal one-lag correlation
parameters in a shaping function.

The mean of the random variable X.

The mean of the random variable Y.

One lag spatial correlation parameter.

One lag temporal correlation parameter.

A white noise process uncorrelated both in time and across channels.
A white noise process uncorrelated both in time and across channels,
The innovations output of the null hypothesis filter.

The innovations output of the alternative hypothesis filter.

A Weibull-distributed Spherically Invariant Random Process (SIRP). ¢ is a
block vector formed by concatenating the time samples &(n ).

A constant; the ratio of the circumference of a circle to its diameter.
The standard deviation of a Weibull distribution.

A standard deviation for interference in the Representative Model.
The standard deviation of the random variable X .

The standard deviation of the random variable Y.

Standard deviation for the ith channel.

A standard deviation.

The standard deviation of the jth channel of the process v(n ).

The Doppler shift in a shaping function.

Angular beam direction.

Angular direction to interference/jammer.

Angular direction to signal.

A norm mapping a vector into the real numbers.
The /7 (n) norm.

The {*(n) norm.

A temporal shaping function for interference.

A temporal shaping function for the signal process.
An event used in the rejection method.

A Probability Density Function.

The Probability Density Function of the random variable R.
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fu, )
fu,v,()

feC)
g()
k()

The Probability Density Function of the random variable U,.
A joint Probability Density Function.

The Probability Density Function of the quadratic form q.
(1) A Probability Density Function. (2) A function.
(2) A triangular function.

by (), hyns () A function used in defining the Probability Density Function for the quadratic

r()
p()

form gq. ‘
A standard mathematical function.
The spectral radius of a matrix.

A.2 Acronyms

AR
ARMA
BAA
CDF
COTS
FFT
GUI
KSC
MSPSS
PDF
RL
RLSTAP/ADT

SIRP
STAP
SVD
UFI

Autoregressive

Autoregressive Moving Average
Broad Agency Announcement
Cumulative Distribution Function
Commercial Off The Shelf

Fast Fourier Transform
Graphical User Interface

Kaman Sciences Corporation
Multichannel Signal Processing Simulation System |
Probability Density Function
Rome Laboratory

Rome Laboratory Space-Time Adaptive Processing Algorithm Development
Tool

- Spherically Invariant Random Process

Space-Time Adaptive Processing

Singular Value Decomposition

~ User Front-end Interface
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Appendix B.
THE WEIBULL DISTRIBUTION

Let X be a random variable from the Weibull distribution. The Probability Density
Function (PDF) for X is:

f(x)=abx"‘lExp[—axb}.OSx. (B-1)
The Cumulative Distribution Function (CDF) is:

F(x)=l-Exp[—ax”].~0$x. (B-2)

' 1 2
The mean of X is a® I‘[l + —ll;] and the variance is a® [I‘[l + -Z—] —F2{1+ —117-” ,
The PDF of a Weibull distribution is often written in a slightly different form. This
alternate expression is defined by a scale and shape parameter. In the above expression, a'? is
the scale parameter and b is the shape parameter. These parameters can be set so as to control
the mean of the Weibull distribution. Equation B-3 ensures the mean is unity:

b
1

r 1+l] | ' (B-3)

A linear transformation of a Weibull distribution is also Weibull. Let the random variable
Y be formed from a linear transformation of X:

Y=cX. (B-4)
Then Y has the following PDF:
g(y)=[ci,,]by”"Exp[—[cib]y”].y>0- (B-5)
The means of X and Y are related as follows:
= < e , (B-6)
2 1
oy =7 0x - (B'7)

[
For example, if the mean of X is unity, then X should be multiplied by —;1— to obtain a
Y

Weibull distribution with the indicated mean. The variance will be transformed as well.
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Appendix C.
THE REJECTION METHOD

The synthesis of Weibull-distributed Spherically Invariant Random Process (SIRP) clutter
relies on the distribution of a random variable R. The Probability Density Function (PDF) for
R is quite complicated, and the corresponding Cumulative Distribution Function (CDF) cannot
be found in closed form. Consequently, the generation of R from the appropriate distribution
cannot be found by a simple transformation of an uniformly distributed random variable.

C.1 A Simple Version

The rejection method provides a Monte Carlo technique for generating random variates
from a distribution with a known PDF f, (r). The more complicated and efficient method
that was implemented can best be understood by first considering a simpler version of the
rejection method. Let b’ be such that

»

'[fR (r)dr=1, (C-1)

and ¢ be such that
¢ =maxfg(r). (C-2)
The rejection method then proceeds as follows:
e Step 1: Generate u, from a distribution uniform on (0, 5).

e Step 2: Generate u, from a distribution uniform on (0, c¢), where u, and u, are
stochastically independent.

e Step 3: If u, < fr (4y), set R to u,. Otherwise, reject u, and return to Step 1.

The proof of the rejection method is based on the theory of conditional probability. A
basic definition is that the conditional probability of an event C,, given the event C,, is the
ratio of the probability of the intersection of the events and the probability of C:

Pr(C,;N\Cy)

Pr(C2lC1)= Pr(Cl)

(C-3)

Define the event M (U,) as follows:
MU;)={(u,u)!08u,sUand0S uy s fr(uy)}. (C-4)

The rejection method generates u,, given (u,,u,) is in M (¥ ). What needs to be shown to
guarantee the rejection method works is that a conditional probability associated with this
procedure is as desired:

U, '
PriO<u; U, (upuy)isinM(b')] = lfk (up)du,. C-5)

Proof: By the definition of conditional probability,

PriCuyuy)isinM (U]
Pr(uyuy)isinM (V)]

PriOsu, sU,(upuy)isinM (¥ )]= (C-6)

Since u, and u, are realizations of stochastically independent uniform random' variables, the

probability of the location of (u;u,) is equally distributed on the rectangle { (uyu;) |
0<u, <V and 0<u, <c }. The area of this rectangle is & ¢. The area of the set M (U,) is the
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v,

integral t[f,z(ul)aru,. Hence,

u

1
Pr[(u,,uz)ismM(Ul)]=—b—,l—c- [fr Cw) . (C-7)
Or

P
—— [ fr(uy)du,
I3

PriOSu,<U, | (uyuy)isin M ()] = ‘4 1 . (C-8)

Ve

Equation C-8 implies Equation C-5, which was to be shown.

C.2 A Sophisticated Version

The simple version of the rejection method will reject a large proportion of the uniform
variates generated. A more efficient method is available to reduce the number of rejected
variates.

Let R have PDF f, (r). No special restrictions are imposed on f,. Let u, have PDF
fu,(u,) where there exists an a’ greater than zero such that

a fr(u)) S fy (uy). (C-9)
Define g (u,) by Equation C-10:
a fr(uy)
g (uy)= Fu,Cury " (C-10)
where fy (u,) is strictly positive. Notice that over the region in which g (u,) is defined,
g(u)<l. (C-11)

The rejection method is then defined by the following algorithm:
e  Step 1: Generate u, from the distribution given by fu, (uy).

[ Stép 2: Generate u, from a distribution uniform on (0, 1), where u, and u, are
stochastically independent. .

o  Step 3: If u, < g (uy), set R to u,. Otherwise, reject u, and return to Step 1.

- Before proving that this method generates a variate from the desired distribution, it
seems advisable to demonstrate the simple version is a special case of the more sophisticated
version of the rejection method. Accordingly, assume there exists a ¥ and ¢ such that
Equations C-1 and C-2 hold. Let u, be uniformly distributed on (0, »’) for this special case.
Notice that Equation C-12 holds:

| o () S fu, (uy). | (C-12)
In other words Equation C-9 holds with «' set to ﬁ Then g (u,) is defined as
g(u) =2 fa(u), 0Su ¥ (C-13)
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Let ¢ u, be uniform on (0, ¢). The simple version of the rejection method accepts u, if c up <
fr (up. This rule is equivalent to accepting u, if u, < g (u,). So the simple version is indeed a
special case of the more sophisticated version of the rejection method.

The proof of the sophisticated version in its full generality relies on the theory of
conditional probability. Define the event M (U;) by Equation C-14:

MUy) ={(upuy)l uysU and0<u, <g (uy)}. (C-14)

The rejection method ensures (u,,u,) will be in M (=) when u, is accepted. Equation C-15 is
what needs to be shown for the rejection method to work:
Ul
Priu sU N (upup)isinM ()] = J’fR (uy)du, =Fp (U,), (C-15)

where F; is the CDF for R.

Proof: By conditional probability,
Pr(upuy)isinM (U,)]
Pri{(uyuy)isin M ()]

Since u,; and u, are stochasically independent, the joint PDF of (u,,u,) is the product of their
individual PDFs:

Priu,<U;l(uyuy)isinM ()] = (C-16)

Ju,u,(uruz) =fy (uy), 0<u sl (C-17)
The probability that (Iu,.uz) is in M (U,) is found as follows:
Uyg(uy)
Priunuy)isinM (UD]= | 1 fu,u,(uruz)dusduy, (C-18)
Uyg(up)
Pri(unu)isinM (U)]= | 1 fu (uy)dusduy, (C-19)
U, g(uy) )
Pr[(upus) isin M (U1 = [ fy (u) l duydu, , (C-20)
Ul
Prl(uyuz) isin M (U1 = [ fu,(u1)g (ur)duy, (C-21)
o @ fr (u))
Pr{(upuy)is inM(Ul)]=_LfUl(u1)W-lg(—l—‘—l—l)—du1. (C-22)
U, :
PriCuyus)isinM(UT=a [ fr(uy)duy. (C-23)
Pri{Cupuy)isinM (U))]=a fg(U,). (C-24)
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Hence,

a Fg(Uy)

TE (e = FrUD. (C-25)

Priu, U\ (upuz)isinM (»)] =

which was to be shown.

C.3 An Application

The rejection method is used in the synthesis of Weibull-distributed SIRPs. Specifically,
it is used to generate a random variable R with the PDF given by Equation C-26:

’.2NJ -1

fr (’)=W’12N1("2), r>0, (C-26)
where
h 2y = (27 NJB At b-2NDp Arb
ang (r) = (= k?l Ty xp (=Ar”), (C-27)
A=acd, (C-28)
2 | ,
1|1 2 C-29
oz-z[a] F[l"—b} ( )
k kiNT-
By= Y (-1) [m} Hl[—”izﬂ-i}. (C-30)
mml i =0
The parameter 0 < b < 2 is specified by the user, and a is chosen such that o is unity:
‘2 b
R 212 C-31
o[aefie2]f -

For small values of » and N J, the PDF either monotonically decreases for all positive values
or peaks very close to the origin. For larger values, the PDF first increases and then
decreases. In the first case, the PDF can be bounded by a triangle with a right angle at the
origin. In the second case, the PDF can be bounded by a differently shaped triangle.

C.3.1 A Triangular Distribution

Consider the PDF f; (r) for small values of » and NJ/. Suppose the PDF always lies
below the triangular function 4 (r ) shown in Figure C-1 in the region (0, d). The parameter d
is chosen such that the probability that R exceeds d is negligible. 4 (r) is defined by:

r
s[l-g}.OSrSd (C-32)

h(ry= 0, else.
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Figure C-1: Triangular Functions

h(r) is not a PDF since the area under the triangle exceeds unity. But consider the function
fu (uy) defined as follows:

2 r
) d{l—'g].OSI‘Sd (C-33)
fu, (ur) = thl): 0, else.

fv,(uy) is a PDF. Furthermore, the inequality given by Display C-9 is satisfied for the PDF in
Equation C-26 and '

2
a = e (C-34)
Hence,
fruyp)
g(u)= h (ay) (C-39)

The random variable U, can be generated based on the following transformation:
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Up=d(1-30), - (C-40)
where U is from a uniform _distribution on (0, 1).
In summary, a variate is generated from the PDF given by Equation C-26 as follows:
e Step 1: Generate u from a distribution uniform on (0, 1).
e  Step 2: Transform to the triangular distribution with PDF f; () using Equation C-40.
e Step 3: Generate u, from a distribution uniform on (0, 1). « and u, are stochastically
independent.

e Step 4: If u, < g (u,), where g is given by Equation C- 39 set R to u,. Otherwise, reject
u; and return to Step 1.

C.3.2 Another Triangular Distribution

Now consider the PDF f; (r) for larger values of » and NJ. In this case, suppose the
PDF for R is bounded above by the triangular function 4 (r ) redefined by Equation C-41:

d—lr ,0<r <4,

h(r)=Ys(d-r)
(d=-dy)’

(C-41)
dysrsd.

The function k (r) is shown in Figure C-2. Once again, define the PDF f;, (u,) as follows:

2

ETU] OSUISdl
2 1
fUl(ul)=E?h(ul)— 2(d - uy) (C'42)
d(d—_dl).dISulsd‘

The inequality gii/en by Display C-9 remains true for «’ as defined in Equation C-34, and
g (uy) is redefined by Equation C-35 in terms of the redefined function h (u,).

The random variable U, can be generated based on using the inverse of the CDF to
transform a uniform variate. The CDF for U, is:

2

uy
d_dl OSUISdl

FUl(ul)_‘ ﬂ (ul—d)(u[_dl) d < Sd (C-43)
d -~ d(d-d,) Hsh=d
The inizerse of the CDF is:
e d
dd“l.OSllS-;
Fi'(u)= (C-44)

d
d -~d¥- [dd1+d(d-d1)u].—§l-Su <.
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Figure C-2: More Triangular Functions

In summary, a variate is generated from the PDF given by Equation C-26 in this case as

- follows:

Step 1: Generate u from a distribution uniform on (0, 1).

e  Step 2: Transform to the triangular distribution with PDF fu (uy):
| uy=Fg, (u), (C-45)
where Fy! is given by Equation C-41.

e  Step 3: Generate u, from a distribution uniform on (0, 1). u and u, are stochastically
independent. '

e Step 4: If u, < g (u,), where g is given by Equation C-39, set R to u,. Otherwise, reject
u, and return to Step 1.
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C.33 'The Parameters of the Triangular Distribution

The above algorithm presumes that the parameters 4, d,, and s of the triangular functions
h (r) are known. d is chosen such that almost all the probability for R is concentrated on (0,
d). Since the Weibull SIRP is used for false alarm analysis, the tail of R needs to be closely
approximated for very large values of R. .

Let o denote the tail (false alarm) probability that is to be approximated. To ensure that
R is synthesized such that this tail probability is accurate, points further out on the tail need to
be synthesized. Accordingly, R is synthesized on the space (0, d) where

Pr(R >d)=J'fR (r)dr, (C-46)
)

and

a=ka. (C-47)
The constant ¥ should be selected to be much less than unity. A default value of ¥ = 0.01 is
appropriate.

Equation C-46 defines 4 implicitly. Further progress requires the calculation of the
integral on the right hand side of Equation C-46. Let C, be defined by Equation C-48:

-1y [,’f,] 8id [me - ,]] . (C48)

im0

_ (_2)NJ _A_k_ 2(_1)N1Ak k
Ce=@irov ) B T W - Dk mz:‘l

The PDF of R is then

NJ b
fr(ry= L Certtletr. (C-49)
kwl
Equation C-46 can be rewritten as follows:
NJ
Pr(R>d)=[ X Cir**~'ewA"dr, : (C-50)
dk =i
NS % s
Pr(R>d)= ZCkJ'rb"“e"" dr . (C-5D)
kml d
Let x = r®. Then,
: 1y P k=-1,-Ax
Pr(R>d)=+ ¥ Cp [x*~leA*dx. (C-52)
k= db

One can prove by induction the formula for the integral given in Equation C-53:
k! (k- 1)

k=1,-Ax g _ _ k-i-1,-Ax 1 _ _
[ teAsdx ;Z.o(k—i-l)!A‘*"t eA* k=123, (C-53)
Hence,
-1 NEI kz-l (k- 1) Kk=i-1,-Ax |
Prif>d)= bk-le i-o(k"i-l)!A"”x ¢ dlb' (C-54)




Pr(R >d)=— ):ck

k-l

Or,

NJ

1
A

So d is found numerically such that

lN!
aZ—ZC,,
bk-l

(k-1

)y

\..-0

(k-1

z

Li=0

= (k- 1)
Z _1)!At+l

ia0 (k=1

(k =D

(k=i =1)NAi+t.
(k = 1)
(k=i-1)NAas+t

(k -i-1)b e—Ad".
- ~Adb
d(k i-1)b e Ad )
: b
dk=i=Db| -ad®

(C-55)

(C-56)

(C-57)

d, is set equal to the point that maximizes the PDF for r. This value is found numerically
by using the bisection method to find the value of r for which the derivative of the PDF is
equal to zero. The maximum value s of the triangular function is found by stepping off the r
axis in small increments. The smallest value of s ensuring that the PDF never exceeds the
triangular function is thereby determined empirically.
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Appendix D.
MATRIX NORMS

The State Space Closed Form algorithm for calculating the block covariance matrix
corresponding to an AR process uses an iterative procedure to calculate an intermediate matrix
P. This iterative procedure is said to converge when the norm of the difference between
successive iterations is less than some small value. Thus, the implementation of this algorithm
requires a decision on the. most appropriate method for calculating matrix norms. This
appendix briefly reviews the appropriate theory for matrix and vector norms.

Intuitively, a norm is the length of a vector. A vector is an element of a vector space,
where a vector space is a set with addition and scalar multiplication operations and a certain
formal structure (Taylor 80). The definition of a vector space generalizes and axiomatizes the
intuitive concept of n dimensional real vectors. The space of all matrices of a specified size
satisfies the needed properties. Consequently, a matrix can be thought of as a vector, and can
have a norm.

A norm on a vector space X is a function Il || mapping a vector into the real numbers.
The function I || must have the following properties:

e  For all vectors x and y, llx +y 1 <llx [l + lly Il (triangle inequality)
e  For all vectors x and scalars a, llax !l <lalllx |l

e For all vectors x, llx 1l 20.

e llxll =0 if and only if x is the zero vector.

The /7 (n) spaces are probably the most obvious examples of norms. Consider the vector
space C", the space of n dimensional complex vectors. Let z = ( zj, z5, ..., z, ) denote an
element of that space. Then the /” (n) norm is defined by:

n Yp
iz I, =[2 |2, IP} . ‘ (D-1)
iml

The /2(n) norm is also known as the Euclidean norm. The /®(n ) norm is defined by

Hzlle=max!z|. (D-2)

A matrix can be thought of as a basis-specific representation of a linear operator mapping
one vector space into another. If X and Y are normed vector spaces, a norm can be defined on
the space { T IT: X — Y } by Equation D-3:

Hr il = sup HTxll= sup UTxll= su M7l (D-3)
Hxilgt

Hx w1 Heife1 lxll

where sup denotes the least upper bound (supremum) of a set. Any matrix norm induced by a
vector norm on an nxn matrix is known as a natural norm (Burden 81).

Each /7 (n) induces a natural matrix norm. The norm induced by the Euclidean (vector)
norm is of particular interest. This norm is related to the spectral radius of a matrix. The
spectral radius p (A ) of the matrix A is defined by Equation D-4:

p(A)=maxIAl, ‘ (D-4)

where A is an eigenvalue of A. The matrix norm induced by the Euclidean norm is defined by
Equation D-5:




Al =[p(AH A2, (D-5)

The spectral radius of a matrix is related to all natural norms by Equation D-6:
p(A)slHA I, (D-6)
for any natural norm I Il

These mathematical facts suggest two alternatives for choosing a norm in a specific
numerical algorithm. One could select a matrix norm induced by a /” (n) norm. Values of p =
1, 2, and = are the obvious candidates. The /2(n) norm is easily implemented. Since A A is
Hermitian, the singular values of A¥ A, as found in a Singular Value Decomposition (SVD),
are also eigenvalues of A A. Or one could consider the spectral radius of a matrix A.
Minimizing this quantity is equivalent to minimizing a lower bound on all natural norms of
the matrix A. This second choice was used in the State Space Closed Form algorithm for
calculating the block covariance matrix corresponding to an AR process.




Appendix E.
THE EQUIVALENCE OF TWO METHODS

Two methods have been given for finding lagged covariance matrices for an AR process
past the order m of the process. The State Space Closed Form Method is based on considering
an AR process as a special case of an innovations representation of a state space process.
Covariance matrices are then found for the state space representation. The AR Recursion
Method proceeds more directly by considering certain properties of an AR process.

Assuming the solution of the State Space Closed Form Method is unique, these two
methods are equivalent when the correlation functions describe the AR process exactly. This
appendix demonstrates this proposition. They may, however, have different numerical stability
results.

The AR process is defined by the AR coefficients A# (1), A7 (2), ..., A# (m) and driving
noise covariance matrix £. The lagged covariance matrices for lags -m, -m +1, ..., 1,0, 1, ...,
m are related to the AR coefficients through the Yule-Walker equations. The AR Recursion
Method calculates block covariance matrices for larger lags by use of Equation E-1:

R()== % AH(OR( -k), [=m+1.m+2, E-1)
k=1

The innovations representation of a state space process is defined by certain block
covariance matrices - the system dynamics matrix F, the Kalman gain K, and the observation
matrix H. For an AR process, the system dynamics matrix, the Kalman gain, and the
observation matrix are given by Equations E-2, E-3, and E-4:

[_AH Q) —AH@Q) . . . —AH(m=1) =A"(m)]
i 0o . .. 0 0
0 I 0 0
F = . . . . . (E-2)
0 0 i 0
=
0
K = ' (E'3)
Lo
A
—A(2)
H= (E'4)
-A (m) |

The State Space Closed Form Method makes use of two intermediate matrices P and I'. P is
found by an iterative algorithm to solve Equation E-5:




P=FPK" +KEK" (E-5)
T is defined by Equation E-6:
FI'=FPH+KZ (E-6)

The State Space Closed Form Method uses Equations E-7 and E-8 to find covariance matrices
for all nonnegative lags:

R(0)=H"PH +% (E-7)

R(Y=H{F'-'T, | =1,2. -~ (E-8)

The remainder of this appendix shows that covariance matrices that satisfy the Yule-Walker
equations and Equation E-1 will also satisfy Equations E-7 and E-8.

E.1 Some Useful Formulas

The relationship between the parameters of an AR process and the corresponding
correlation functions is expressed by Display E-9: '

[ R(0) R(Q) ... R(m)
R (-1) R (0) ... R(m=-1)
[IA”(l)...A”(m)] : - : =[zo...o] (E-9)
LR(-m) R(-m +1) . . . R(0) |
The last m columns of this system of equations can be written as in Equation E-10:
RUY+ 3 AF (ORI -k)=0. [=1.2, - .m. (E-10)
kwml
Or,
R(I)==F AR -k), I =1.2. -~ .m. (E-11)
kwl

The AR Recursion Method extends Equation E-11 to all strictly positive /. Thus, Equation E-
12 holds for R (/) satisfying the AR Recursion method:

R(I)== ¥ A*(OR(I-k), 1=1,2.3. - . (E-12)

k=l

The Hermitian transpose of the Yule-Walker equations is given by Display E-13:

[ R(0) R() ... Rm) [ 1 z
R (-1) R (0) ... R(m~-1D]]A(]) 0
= (E-13)
LR(-m)R(-m+1) ... R@) JlA(m)] O]
The first row of this system yields Equation E-14:
- f; AK)R(k)=R(0)-E. (E-14)

kml

The remaining rows yield Equation E-15:




R(—l)=—iA(k)R(k—l).1=1.2,--',m. (E-15)

kwl]

E.2 The Proof

The proof of the equivalence of the two methods for the special case of AR processes is
presented here by means of a succession of lemmas. The first lemma relates P to the
covariance matrices:

Lemma E-1: Let P be the solution of Equation E-16:
P=FPK" +KZK", (E-16)

where F, K, and I are as in the state space representation of an AR process of order m.
Then P is given by Equation E-17:

R (0) R(1) ... R(m-=-1)]
R (-1) R(Q) ... R(m=2)
P = ' ' ' . (E-17)
_R(-r;1+1) R(—n;+2) .. : R(‘O)

Proof: Assume the solution to Equation E-16 is unique. The proof proceeds by showing
that when the conjectured value for P is plugged into the right hand side of Equation E-16,
the desired left hand side results. To begin, calculate F P

FP =
[—AH(1) —AH() . . . —AH(m-1) -4%(m)|] RQ RA) . .. Rm=D)
! o ... 0 0 Rl RO ... R(m-2)
0 I 0 0 R-2 RED . .. R(m-3)
(E-18)
0 o ... i 0 ||REm+D REem+2) . . . RO |
Thus,
-f‘,A”(k)R(l-k) -iA”(k)R(z-k) C -)"iA”(k)R(m—k)
k=] k=l kml
R (0) R(1) .. Rm-1
R (-1) R (0) .. R(m=-2) 19
FP = . . . . E-19)
R(-m +2) R(-m +3) . .. R(1) |

Using Equation E-11, one obtains Equation E-20:




R(1) R(2) R(3) ... R(m)
R (0) R(1) "R(2) .. .R(m-=1)
R(-1) R (0) R(1) ... R(m=2)
FP = ) . ) . ) (E-20)
(R(-m+2) R(-m +3) R(-m +4) . . . R(1)

The next step is to determine F P F¥.

FPFH =
R (1) Ry ... Rm) |[ -4ty 1. .. 0]
R (0) R(1) ...Rm=-D|| -4@) o...0
' (E-21)
R(-m +3) R(-m +4) . . . R(2) ||-Am-1)0.. .1
[ R(-m+2) R(-m+3) . .. R(1) || -A(m) 0...0
Thus,
- 3 A (KR (k) R(1) R(2) . ..R(m-1)
k=l
-T ARG =-1) RO  R() ...R(m-2)
k=l
(E-22)
FPFH =
~Y AG)R(k=-m+1) R(-m+2) R(-m +3) . . . R(0)
k=l
Equations E-14 and E-15 yield Equation E-23:
[ R(0)-% R(1) R(2) .. .R(m-=1)]
R(-1) R (0) R(1) . ..R(m=2)
L &
R(cm+1) R(-m +2) R(-m +3) . . . R(0)

Finally, one needs to calculate K k" to complete the evaluation of the right hand side

of Equation E-16:
T
0
KIK"=| ):[10.. : 0] (E-24)




't 0. ..0]
00 . 0
KZKH = ’ ' (E-25)
L00. . .0]
Therefore,
R (0) R(1) . ..R(m-=-1]
R(-1) R(O) . ..R(m=2)
FPFY + KXK"Y = ' ’ (E-26)
L R(-m +1) R(-m+2) ... R(0)

Equation E-26 shows that when the claimed value of P is substituted in Equation E-16,
equality holds. This completes the proof of the lemma.

The block column vector I' is used in the State Space Closed Form method to calculate
covariance matrices with positive lags. The following lemma gives I' explicitly:

Lemma E-2: Let I" be defined by Equation E-27:
I'=FPH+KE, : (E-27)

where F, H, K, P, and L are as in the state space representation of an AR process of order
m. Then I' is given by Equation E-28:

R (0)
R(-1)
r= ’ . (E-28)
LR(-m +1) |
Proof: Using Equation E-20,
' [ R(1) R(2) ... Rm) |[-a)]
R (0) R(1) . ..Rm-D]||-4)
FPH = ' ' ' ’ ' (E-29)
| R(-m +2) R(-rr;+3) o R(1) ||-A(m)]




~ T AGOR (k)

k=l

—iA(k)R(k—l)

kml

(E-30)
FPH =
“Y ARk =m +1)
k=]
From Equations E-14 and E-15,
[ R(0)-% ]
R(-1)
FPH = § (E-31)
IR (=m + 1) |
Therefore,
R (0)
R(-1)
FPH+KI= - (E-32)
v R(-m + 1) ]
So the lemma is proved.
Another useful lemma follows:
Lemma E-3:
[R(I=1)]
R(l -2)
Fl-lr= : Li=1,2,3, - } (E-33)
R (1 —m )]

where F and I" are as in Lemma E-2.
Proof: (by induction) The case / =1 is a trivial corollary of Lemma E-2. Accordingly,

assume the theorem for / - 1: .

[ R(I-2)

R(l-3)

Fl -2 = (E-34)

R -m-1)]

Consider the case of !:




F'-'I'=F(F'-I) (E-35)

[_AH() =A@ . . <Afm-1) -a"m)| | R -2)
I o ... 0 0 R(l-3)
0 I 0 0 R (I -4)
Fi-lr = . ) . . . . (E-36)
0 o ... / 0 | [Rt=m-1)]
- f;A”(k)R(l-l-k)
k=l
R(U=-2)
(E-37)
Fi-lr=
R -m)

The lemma follows from Equation E-12.

The above lemmas allow a proof of the equivalence of the State Space Closed Form and
AR Recursion Methods.

Theorem E-1: Let H, P, and X be as in the state space representation of an AR process. Then
Equation E-38 holds:

R(0O)=H"PH +Z (E-38)

Proof:
R(0) R(1) . .. R(m-l)}
R(-1) R(O) . .. R(m=2)
HY P =[-A"(1) -AH Q) ... —A”(m)] : : ' . : (E-39)
_R(—n.z+1) R(-m+2) . . R('O)
HH P =[-f‘,A”(k)R(1—k) —iA”(k)R(Z-—k) C -f_‘,A”(k)R(m-k) (E-40)
km] k=l k=l .
By Equation E-11,
HY P =[R(1) R(2) ... R(m)] (E-41)
Thus, '
A ]
-A(2)
H”PH=[R(1) R(2) . .. R(m)] (E-42)
L-A(m) ]




HHPH == ¥ AR K) (E-43)

kwl
By Equation E-14,
H¥PH =R(0)-X : (E-44)
Theorem 1 follows.
Theorem E-2: Let A, F, and T be as in the state space representation of an AR process. Then
Equation E-45 holds:
RU)=HUF'-'T, 1=1,2,3, - (E-45)

Proof: Using Lemma E-3,

[R(1-1)]
R(l-2)
HHF'-*F=[-A"('1) -Af(2) ... —A”(m)] : .1=1,2,3, --- (E-46)
R(I-m)]
Or,
H”F’-1r=-f;A"(k)R(1-k). [=1,2,3, - (E-47)
k-
By Equation E-12,
HYF'-'T'=RW). 1=1,2.3, - (E-48)

The proof of Theorem 2 is complete. Theorems 1 and 2 state that the State Space Closed
Form Method follows from the AR Recursion Method. :
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Appendix F.
AN EXAMPLE FOR THE STATE SPACE MODEL

A simple test case is presented here for the state space estimation algorithm. It illustrates
the difficulties of testing, and presents some results that can be compared with other
implementations. Consider a two-channel real Autoregressive (AR) process of order two.
Consider the Gaussian autocorrelation shaping function (Equation 3.4-12) with the amplitude
matrix:

1.995 00
[ 0.0 1.995 &1
and the one-lag temporal correlation coefficient:
09 00
[o.o 0.9]- €2

The lag matrix is the zero matrix, the Doppler frequency is 0.0, and the sample interval is
chosen to be 0.01.

The shaping function determines the covariance matrix used to solve the Yule-Walker
‘equations:

-

(1995 00 17955 00 13089 00 -
00 1995 00 17955 00 1.3089
17955 00 1995 00 17955 00
=] 00 17955 00 1995 00 17955
13089 00 17955 00 1995 00
| 00 13089 00 17955 00 1995

The AR parameters found by solving the Yule-Walker equations are given by Displays F-4
and F-5:

R(-1) R(0) R(1) (F-3)

R(0) R(1) R(2)
R=
R(-2) R(-1) R(0)

, -1.629. 00
A= [ 0.0 —1.629] ' -4
081 00
Am:[ 00 0.81}‘ E-5)
The driving noise covariance matrix is
0.1303554 0.0
= [ 0.0 0.1303554} ~ (F-6)

F.1 True System State Space Parameters

Corresponding to the AR parameters are parameters for the innovations representation of
the state space model. The system dynamics matrix is

1629 00 -0.81 00
00 1629 00 -081
F=/"10 00 00 o0
00 10 00 00

(F-7)

The Hermetian transpose of the observation matrix H is
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1629 00 =081 00

=1 00 1629 00 -081| (F-8)

The matrix I' is

1995 00
00 1995

I=117955 00
00 17955

(F-9)

The Kalman gain matrix is

10 00
00 1.0
K=100 00| (F-10)

0.0 0.0

And the covariance matrix for the innovations is the covariance matrix for the driving noise in
the AR model.

These true system parameters can be used for this test case to test any algorithm for
estimating state space parameters. Such an algorithm may introduce a basis transformation of
the state space, but the innovations covariance matrix should remain unchanged.

The AR parameters (and the state-space model parameters derived from them) are a
minimum-mean-square fit to the matrix lags R (0), R (1), and R (2) in Equation F-3. Thus, in
order to have a numerically exact true model, the matrix lags R (0), R (1), and R (2) must be
recalculated using the state-space relations:

R(O)=HYPH +X (F-11)

R(m)=HYF™~I', m =1,2 (F-12)

where P is the steady-state covariance matrix of the true system state vector. Matrix P is
calculated as the solution to the following equation:

P=FPF" +KxzK". (F-13)

For a simple low-order system, matrix P can be obtained analytically. For high-order systems
a numerical recursion is preferred. The matrix lags generated in this manner correspond
exactly with the state space model and the AR model.

F.2 The Scientific Studies Algorithm with Exact Order

This appendix presents step-by-step results of the Scientific Studies algorithm for
estimating state space parameters. This test case shows the results when the upper bound on
the matrix order of the state space model matches the actual value, two. The inputs to the
algorithm are past block correlation matrix, the future block correlation matrix, the block
Hankel matrix, and the column-shifted block Hankel matrix, shown in displays F-14, F-15, F-
16, and F-17, respectively:
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1995 00 17955 00
_{R(O) R(1)| | 00 1995 00 17955 (F-14)
P={R(-1) R(0)| =] 17955 00 1995 00
00 - 17955 00 1995
1995 00 17955 00
_{R(O)R(—l)}_ 00 1995 00 17955 (F-15)
FTZLR(1) R(0) |7 17955 00 1995 00
00 L7955 00 1995 |
17955 00 13089 00
_[R(l)R(z) 00 17955 00 13089 F.16)
LLTIR(2) R(3)| 7| 13089 00 06778 00
00 13089 00 06778
13089 00 06778 00
_ _[R(2) R(3)| | 00 1308 00 06778 E-17
LL=|R(3) R(4)| = 06778 00 004403 00

00 06778 0.0  0.04403

Notice that in this example the past and future block correlation matrices are equal to each
other. This is not true in general. '

The higher lag covariance matrices R (3) and R (4) were found by the AR Recursion
Method. These matrices could have been calculated equivalently using the Closed-Form
Method based on the state-space parameters. For this example, they work out to be the least
significant numerals in a difference, suggesting that nemerical difficulties can arise here as the
order increases.

The singular value decomposition of the past and future block covariance matrices is
given by display F-18:

\p) V2 3.79051 00 V2 42 19957 1.79551 (F-18)
AL L 00 01995rjf 1, 1 7| 179551 19951
V2 V2 v2© V2
Accordingly, the square root of the past and forward block covariance matrices are:
1.1967871 0.7501331
12 _ p 12 _ -
Re™ = Re" = [0.7501331 1.1967871] (F-19)
The inverse of the square root of these block covariance matrices is:
1.376251 -0.862621
~112 _ p=1i2 -2
Ri™™=Re ™= {—0.862621 1.376251 ] (F-20)
The matrix A is calculated as:
0.79731 0.51691
= R-12 =12 -
A=Ri T HL R [0.51691 -0.48791} (F-2D)

At least one significant digit is lost in some of the components of A. Since A is calculated
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from the Hankel matrix, and numerical precision problems can arise in calculating the
covariance sequence lags comprising the Hankel matrix, these numerical difficulties may be
compounded. A Singular Value Decomposition of A is:

094311 —0.33231H0.97941 0 H0.94311 033231

= H -
A=UpSyVi= [0.33231 094321 0 0671|] 033231 —094321 (F-22)

Equation F-22 shows the SVD used in the computer program and further calculations here.

The past and future transformation matrices are:

» 10113/ 035621
Tp = ViRF'" = [ 127101 —1.58471} (-23)
[ 101131 035621
Tr =ULRF™ =| _ion101 158471 ] (F-29)
The matrix A is:
T osseor 031421
A=TrHTF =| o310 0.50541] (F-25)
The matrix Z, is
ZH = (HL.L Tf,"l)l:Z. 14 = [ 13501 020791] (F'26)
The matrix Z is '
1.34961
Zr=(Tr H p a2 = [_0.2079 1} (F-27)

These matrices allow one to finally determine the state space parameters. The system
dynamics matrix is:

0.874/ 0.3881 .
_o-I2% -2 _ .
F=Simase™ = {-—0.3881 0.7541} (F-28)
The Hermetian transpose of the observations matrix is:
HY =Z, S;V2 = [ 1361 0.2541] (F-29)
The backward observation matrix I is:
1.3641
=12 -
=83 Zr=[_0'254[} (F-30)
The state space correlation matrix is:
097941 0
I =S54 =[ 0 0.671} E-31)
The driving noise covariance matrix is:
Q=R (0)-HYTIH =0.1304/ (F-32)

The calculation of Q results in the loss of one significant digit in this case. The Kalman gain
matrix is:
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K=(F-FTH)Q = (F-33)

0.9991
1.041

The state space algorithm has introduced a transformation of the basis for the state vector. An
element of the state space associated with the model parameters in Equations F-7 through F-
10 is transformed to the state space associated with the parameters in Equations F-28 through
F-33 by premultiplying it by the matrix T, where

[0.9991 -0.3151}

1.04/ -1501 (F-34)

F.3 The Scientific Studies Algorithm with Higher Order

This test case shows the results when the upper bound on the matrix order of the state
space model exceeds the actual value. In this case, the upper bound is three, while the matrix
order of the model is two. The inputs to the algorithm, the past block correlation matrix, the
future block correlation matrix, the block Hankel matrix, and the column-shifted block Hankel
matrix, are shown in displays F-35 through F-38:

[R(0) R(1) R(2)] [ 19951 179551 1.3089/]
Rp=|R(~1) R(0) R(1)|=|17955I 19951 1.7955] (F-35)
LR(-2) R(-1) R(0)| [ 13089/ 1.7955I 1995I |

[R(O) R(-1) R(=2)] [ 19951 179551 1.3089/]
Re=|{R(1) R(0) R(-1)|={17955I 1.995I 1.79551 (F-36)
[R(2) R(1) R(0) | | 130897 1.79551 19951 |

R(1) R(2) R(3) 1.79551 1.3089/ 0.67791

Ho;, =] R(2) R(3) R(4)J =[1.30891 0.67791 0.044031J (F-37)
R(3) R(4) R(5) 0.67791 0.044031 -047731
R(2) R(3) R(4) 1.30897/ 0.67791 0.044031

Hyp =|R(3) R(4) R(5)|=| 06779/ 0.04403/ —047731 (F-38)
R (4) R(5) R(6) -0.04403/ -0.47731 -0.81331

(More significant digits were used in working out this example than are shown.)
The singular value decomposition of the past and future block covariance matrices is:

0.55891 -0.70711 04331/ ||527171 0 0 0.55891 06125/ 055897
0.6125/ 01  -0.7904/ 0 0.68611 0 -0.70711 0/ 07071/
0.5589/ 0.70711 04331/ 0 0 0027257)| 04331/ -0.7904/ 04331/

19957 1.79551 1.30891
L79551 19951 1.79551
130891 1.79551 1.9951

Accordingly, the square roots of the past and forward block covariance matrices are:

1.16241 0.72961 0.33411
0.72961 0.96461 0.72961
0.33417 0.72961 1.16241

The inverse of the square root of these block covariance matrices is:

(F-39)

(F-40)

RM? = RI2 =




1.87611 -1.92471 0.6688!
R\ =RFV2 = | 192471 394801 -1.92471 (F-41)
0.66881 -1.92471 1.87611

The matrix A is calculated as:
0.75221 048291 0.75221

A=RFV2H,, RF' =| 048291 -0.0902/ -0.26471 (F-42)
022721 -0.26471 ~0.35251

Some of the elements of A in the corresponding computer print out are only accurate to four
significant figures, already having lost some precision. An SVD of A is

091571 032117 -0.24151|{0.97941 0 0 091571 039411 0.07791
03941/ -0.6015/ 0.6949/ 0 06699/ 0 -0.3211/ 0.6015/ 0.73151| (F-43)
0.077921 -0.73151 —0.67741 0 0 3.1x10%7 | 024151 -0.69491 0.67741

The past and future transformation matrices are:

[ 101151 03564} —5.6x107" ]
Tp = VHRFV2 = | ~12709] -158471 4.4x10° (F-44)
| 224351 —45119 2.7697 |

[ 101151 -035641 -5.6x1077
Tr =U{RFY = | 127091 -158471 4.4x10°¢ (F-45)
| —22435] 45119 -2.7697 |

The matrix Z is

A =46
The matrix Z, is:

Zy = [ 1.34961 -0.2076/ ] (F-47)
The matrix Z is:

Ze = 134961 020761 | (F-48)

The system dynamics matrix is:

0.87401 -0.38741] (F-49)

=§-27 e-12
FeSimzs5a™ = {0.38741 075501
The Hermetian transpose of the observations matrix is:

HY =7, 872 = [ 1.36381 —0.25371] (F-50)

The backward observation matrix I is:

1.36381
=172 -
[=5 Zr’{o.zsm} F-51)
The state space correlation matrix is:
097941 0
I =5 =[ 0 0.66991] F-52)

The driving noise covariance matrix is:




Q=R (0)-HTIH =0.1304/ (F-53)
The Kalman gain matrix is:

K=(F-FINH)Q!= (F-54)

-1.04027

1.0010/ }

These values are close to the values obtaining when the upper limit on the state space order
matches the actual order.

“U.S. GOVERNMENT PRINTING OFFICE: 1996-710-126-201414

98




